BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-25-2010, 08:21 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Validation of the binding site structure of the cellular retinol-binding protein (CRB

Validation of the binding site structure of the cellular retinol-binding protein (CRBP) by ligand NMR chemical shift perturbations.

Related Articles Validation of the binding site structure of the cellular retinol-binding protein (CRBP) by ligand NMR chemical shift perturbations.

J Am Chem Soc. 2005 Apr 20;127(15):5310-1

Authors: Wang B, Merz KM

We have calculated proton chemical shift perturbations (CSPs) of retinol in the cellular retinol-binding protein (CRBP) through the use of a recently developed computational approach (Wang et al. J. Chem. Phys. 2004, 120, 11392-11400). Excellent agreement with experimental values was obtained for the X-ray structure, whereas the lack of a key hydrogen bond and the distorted isoprene tail of retinol for some NMR models lead to large CSP RMSDs. Therefore, a comparison of computed CSPs of retinol with experiment offers a convenient way to validate the structure of retinol and its orientation in the binding site for the NMR structures.

PMID: 15826155 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica. Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica. Chem Biol Drug Des. 2011 Jan 14; Authors: Chandra K, Mustafi SM, Muthukumar S, Chary KV The study of protein-ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature...
nmrlearner Journal club 0 01-18-2011 10:22 PM
[NMR paper] Identification of the bile acid-binding site of the ileal lipid-binding protein by ph
Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. Related Articles Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure. J Biol Chem. 2001 Mar 9;276(10):7291-301 Authors: Kramer W, Sauber K, Baringhaus KH, Kurz M, Stengelin S, Lange G, Corsiero D, Girbig F, König W, Weyland C ...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] NMR solution structure of type II human cellular retinoic acid binding protein: impli
NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Related Articles NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Biochemistry. 1998 Sep 15;37(37):12727-36 Authors: Wang L, Li Y, Abildgaard F, Markley JL, Yan H The structure of human apo-cellular retinoic acid binding protein II (apo-CRABPII) in solution at pH 7.3 has been determined by NMR spectroscopy. The sequential assignments of the 1H, 13C, and 15N resonances...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR structure determination of the binding site for ribosomal protein S8 from Escheri
NMR structure determination of the binding site for ribosomal protein S8 from Escherichia coli 16 S rRNA. Related Articles NMR structure determination of the binding site for ribosomal protein S8 from Escherichia coli 16 S rRNA. J Mol Biol. 1998 Jul 24;280(4):639-54 Authors: Kalurachchi K, Nikonowicz EP Many cellular processes involve the preferential interaction of an RNA molecule with a specific protein. A detailed analysis of the individual protein and RNA components of these interactions can provide unique insights into the structural...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] 19F-NMR studies of retinol transfer between cellular retinol binding proteins and pho
19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. FEBS Lett. 1997 Feb 3;402(2-3):116-20 Authors: Rong D, Lin CL, d'Avignon DA, Lovey AJ, Rosenberger M, Li E The cellular retinol binding proteins, CRBP and CRBP II, are implicated in the cellular uptake of retinol...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] 19F-NMR studies of retinol transfer between cellular retinol binding proteins and pho
19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 19F-NMR studies of retinol transfer between cellular retinol binding proteins and phospholipid vesicles. FEBS Lett. 1997 Feb 3;402(2-3):116-20 Authors: Rong D, Lin CL, d'Avignon DA, Lovey AJ, Rosenberger M, Li E The cellular retinol binding proteins, CRBP and CRBP II, are implicated in the cellular uptake of retinol...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] An investigation of the ligand-binding site of the glutamine-binding protein of Esche
An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Related Articles An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Biochemistry. 1994 Jul 26;33(29):8651-61 Authors: Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C Glutamine-binding protein (GlnBP) is an essential component of the glutamine transport system in Escherichia coli. Rotational-echo double-resonance...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Inter-tryptophan distances in rat cellular retinol binding protein II by solid-state
Inter-tryptophan distances in rat cellular retinol binding protein II by solid-state NMR. Related Articles Inter-tryptophan distances in rat cellular retinol binding protein II by solid-state NMR. Biochemistry. 1993 May 4;32(17):4560-3 Authors: McDowell LM, Holl SM, Qian SJ, Li E, Schaefer J Structural constraints for the tryptophans in rat cellular retinol binding protein II (CRBP II) have been obtained by rotational-echo double-resonance (REDOR) solid-state NMR. CRBP II was labeled with L-tryptophan and L-tryptophan. The 13C-19F dipolar...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:41 PM.


Map