BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Identification of the bile acid-binding site of the ileal lipid-binding protein by ph

Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.

Related Articles Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.

J Biol Chem. 2001 Mar 9;276(10):7291-301

Authors: Kramer W, Sauber K, Baringhaus KH, Kurz M, Stengelin S, Lange G, Corsiero D, Girbig F, König W, Weyland C

The ileal lipid-binding protein (ILBP) is the only physiologically relevant bile acid-binding protein in the cytosol of ileocytes. To identify the bile acid-binding site(s) of ILBP, recombinant rabbit ILBP photolabeled with 3-azi- and 7-azi-derivatives of cholyltaurine was analyzed by a combination of enzymatic fragmentation, gel electrophoresis, and matrix-assisted laser desorption ionization (MALDI)-mass spectrometry. The attachment site of the 3-position of cholyltaurine was localized to the amino acid triplet His(100)-Thr(101)-Ser(102) using the photoreactive 3,3-azo-derivative of cholyltaurine. With the corresponding 7,7-azo-derivative, the attachment point of the 7-position could be localized to the C-terminal part (position 112-128) as well as to the N-terminal part suggesting more than one binding site for bile acids. By chemical modification and NMR structure of ILBP, arginine residue 122 was identified as the probable contact point for the negatively charged side chain of cholyltaurine. Consequently, bile acids bind to ILBP with the steroid nucleus deep inside the protein cavity and the negatively charged side chain near the entry portal. The combination of photoaffinity labeling, enzymatic fragmentation, MALDI-mass spectrometry, and NMR structure was successfully used to determine the topology of bile acid binding to ILBP.

PMID: 11069906 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach.
Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Binding site identification and structure determination of protein-ligand complexes by NMR a semiautomated approach. Methods Enzymol. 2011;493:241-75 Authors: Ziarek JJ, Peterson FC, Lytle BL, Volkman BF Over the last 15years, the role of NMR spectroscopy in the lead identification and optimization stages of pharmaceutical drug discovery has steadily increased. NMR occupies a unique niche in the biophysical analysis of drug-like...
nmrlearner Journal club 0 03-05-2011 01:02 PM
Residual interactions in unfolded bile acid-binding protein by (19) F NMR.
Residual interactions in unfolded bile acid-binding protein by (19) F NMR. Residual interactions in unfolded bile acid-binding protein by (19) F NMR. Protein Sci. 2011 Feb;20(2):327-35 Authors: Basehore HK, Ropson IJ The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19) F NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak...
nmrlearner Journal club 0 02-02-2011 02:40 AM
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. Biochemistry. 2011 Jan 12; Authors: He Y, Estephan R, Yang X, Vela A, Wang H, Bernard C, Stark RE Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to...
nmrlearner Journal club 0 01-14-2011 12:05 PM
Residual interactions in unfolded bile acid-binding protein by (19)F-NMR.
Residual interactions in unfolded bile acid-binding protein by (19)F-NMR. Related Articles Residual interactions in unfolded bile acid-binding protein by (19)F-NMR. Protein Sci. 2010 Nov 29; Authors: Basehore HK, Ropson IJ The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19)F-NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak assignments...
nmrlearner Journal club 0 12-01-2010 04:41 PM
[NMR paper] The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and
The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination. Biochemistry. 1997 Feb 18;36(7):1719-29 Authors: Stolowich NJ, Frolov A, Atshaves B, Murphy EJ, Jolly CA, Billheimer JT, Scott AI, Schroeder F The interaction and orientation of fatty acids...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278-90 Authors: Hodsdon ME, Cistola DP The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and
The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination. Biochemistry. 1997 Feb 18;36(7):1719-29 Authors: Stolowich NJ, Frolov A, Atshaves B, Murphy EJ, Jolly CA, Billheimer JT, Scott AI, Schroeder F The interaction and orientation of fatty acids...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid
Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy. Related Articles Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy. Biochemistry. 1990 Apr 24;29(16):3828-34 Authors: Van Gorkom LC, Horváth LI, Hemminga MA, Sternberg B, Watts A The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:13 AM.


Map