View Single Post
  #1  
Unread 11-19-2010, 08:29 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,209
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Identification of the bile acid-binding site of the ileal lipid-binding protein by ph

Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.

Related Articles Identification of the bile acid-binding site of the ileal lipid-binding protein by photoaffinity labeling, matrix-assisted laser desorption ionization-mass spectrometry, and NMR structure.

J Biol Chem. 2001 Mar 9;276(10):7291-301

Authors: Kramer W, Sauber K, Baringhaus KH, Kurz M, Stengelin S, Lange G, Corsiero D, Girbig F, König W, Weyland C

The ileal lipid-binding protein (ILBP) is the only physiologically relevant bile acid-binding protein in the cytosol of ileocytes. To identify the bile acid-binding site(s) of ILBP, recombinant rabbit ILBP photolabeled with 3-azi- and 7-azi-derivatives of cholyltaurine was analyzed by a combination of enzymatic fragmentation, gel electrophoresis, and matrix-assisted laser desorption ionization (MALDI)-mass spectrometry. The attachment site of the 3-position of cholyltaurine was localized to the amino acid triplet His(100)-Thr(101)-Ser(102) using the photoreactive 3,3-azo-derivative of cholyltaurine. With the corresponding 7,7-azo-derivative, the attachment point of the 7-position could be localized to the C-terminal part (position 112-128) as well as to the N-terminal part suggesting more than one binding site for bile acids. By chemical modification and NMR structure of ILBP, arginine residue 122 was identified as the probable contact point for the negatively charged side chain of cholyltaurine. Consequently, bile acids bind to ILBP with the steroid nucleus deep inside the protein cavity and the negatively charged side chain near the entry portal. The combination of photoaffinity labeling, enzymatic fragmentation, MALDI-mass spectrometry, and NMR structure was successfully used to determine the topology of bile acid binding to ILBP.

PMID: 11069906 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No