BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:32 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,192
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR

Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation.

Related Articles Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation.

Biochemistry. 2001 Mar 27;40(12):3439-48

Authors: Inman KG, Baldisseri DM, Miller KE, Weber DJ

Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism while accounting for diffusion anisotropy. Rotational diffusion of the symmetric homodimer has moderate but statistically significant prolate axial anisotropy (D( parallel)/D( perpendicular) = 1.15 +/- 0.02), a global correlation time of tau(m) = 7.80 +/- 0.03 ns, and a unique axis in the plane normal to the molecular symmetry axis. Of 29 residues at the dimer interface (helices 1 and 4), only one has measurable internal motion (Q71), and the order parameters of the remaining 28 were the highest in the protein (S(2) = 0.80 to 0.91). Order parameters in the typical EF hand calcium-binding loop (S(2) = 0.73 to 0.87) were slightly lower than in the pseudo-EF hand (S(2) = 0.75 to 0.89), and effective internal correlation times, tau(e), distinct from global tumbling, were detected in the calcium-binding loops. Helix 3, which undergoes a large, calcium-induced conformational change necessary for target-protein binding, does not show evidence of interchanging between the apo and Ca(2+)-bound orientations in the absence of calcium but has rapid motion in several residues throughout the helix (S(2) = 0.78 to 0.88; 10 < or = tau(e) < or = 30 ps). The lowest order parameters were found in the C-terminal tail (S(2) = 0.62 to 0.83). Large values for chemical exchange also occur in this loop and in regions nearby in space to the highly mobile C-terminal loop, consistent with exchange broadening effects observed.

PMID: 11297409 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Local protein backbone folds determined by calculated NMR chemical shifts.
Local protein backbone folds determined by calculated NMR chemical shifts. Local protein backbone folds determined by calculated NMR chemical shifts. J Comput Chem. 2011 Sep 9; Authors: Czajlik A, Hudáky I, Perczel A Abstract NMR chemical shifts (CSs: ?N(NH) , ?C(?) , ?C(?) , ?C', ?H(NH) , and ?H(?) ) were computed for the amino acid backbone conformers (?(L) , ?(L) , ?(L) , ?(L) , ?(L) , ?(D) , ?(D) , ?(D) , and ?(D) ) modeled by oligoalanine structures. Topological differences of the extended fold were investigated on single ?-strands,...
nmrlearner Journal club 0 09-10-2011 06:51 PM
[NMR paper] Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and si
Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Related Articles Location of the Zn(2+)-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Biochemistry. 2003 Nov 25;42(46):13410-21 Authors: Wilder PT, Baldisseri DM, Udan R, Vallely KM, Weber DJ In addition to binding Ca(2+), the S100 protein S100B binds Zn(2+) with relatively high affinity as confirmed using isothermal titration calorimetry (ITC; K(d) = 94 +/- 17 nM). The Zn(2+)-binding site on...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Shape and dynamics of a calcium-binding protein investigated by nitrogen-15 NMR relax
Shape and dynamics of a calcium-binding protein investigated by nitrogen-15 NMR relaxation. Related Articles Shape and dynamics of a calcium-binding protein investigated by nitrogen-15 NMR relaxation. Methods Mol Biol. 2002;173:285-300 Authors: Werner JM, Campbell ID, Downing AK
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as d
Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Related Articles Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry. 2002 Jan 22;41(3):788-96 Authors: Rustandi RR, Baldisseri DM, Inman KG, Nizner P, Hamilton SM, Landar A, Landar A, Zimmer DB, Weber DJ S100A1, a member of the S100 protein family, is an EF-hand containing Ca(2+)-binding protein (93 residues per subunit) with noncovalent interactions at its dimer interface. Each...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxa
Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Backbone dynamics of the 269-residue protease Savinase determined from 15N-NMR relaxation measurements. Eur J Biochem. 1996 Feb 1;235(3):629-40 Authors: Remerowski ML, Pepermans HA, Hilbers CW, Van De Ven FJ Backbone dynamics of Savinase, a subtilisin of 269 residues secreted by...
nmrlearner Journal club 0 08-22-2010 02:27 PM
[NMR paper] Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy. Biochemistry. 1996 Sep 10;35(36):11577-88 Authors: Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ S100B(beta beta), a member of the S100 protein family, is a Ca(2+)-binding protein with noncovalent interactions at its dimer interface. Each apo-S100 beta...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Solution secondary structure of calcium-saturated troponin C monomer determined by mu
Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy. Protein Sci. 1995...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-d
Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Related Articles Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856-66 Authors: Kördel J, Skelton NJ, Akke M, Palmer AG, Chazin WJ Backbone dynamics of calcium-loaded calbindin D9k have been investigated by two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy, using a uniformly 15N enriched...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:06 PM.


Map