BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2010, 11:41 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-d

Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy.

Related Articles Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy.

Biochemistry. 1992 May 26;31(20):4856-66

Authors: Kördel J, Skelton NJ, Akke M, Palmer AG, Chazin WJ

Backbone dynamics of calcium-loaded calbindin D9k have been investigated by two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy, using a uniformly 15N enriched protein sample. Spin-lattice relaxation rate constants, spin-spin relaxation rate constants, and steady-state [1H]-15N nuclear Overhauser effects were determined for 71 of the 72 backbone amide 15N nuclei. The relaxation parameters were analyzed using a model-free formalism that incorporates the overall rotational correlation time of the molecule, and a generalized order parameter (S2) and an effective internal correlation time for each amide group. Calbindin D9k contains two helix-loop-helix motifs joined by a linker loop at one end of the protein and a beta-type interaction between the two calcium-binding loops at the other end. The amplitude of motions for the calcium-binding loops and the helices are similar, as judged from the average S2 values of 0.83 +/- 0.05 and 0.85 +/- 0.04, respectively. The linker region joining the two calcium-binding subdomains of the molecule has a significantly higher flexibility, as indicated by a substantially lower average S2 value of 0.59 +/- 0.23. For residues in the linker loop and at the C-terminus, the order parameter is further decomposed into separate order parameters for motional processes on two distinct time scales. The effective correlation times are significantly longer for helices I and IV than for helices II and III or for the calcium-binding loops. Residue by residue comparisons reveal correlations of the order parameters with both the crystallographic B-factors and amide proton exchange rates, despite vast differences in the time scales to which these properties are sensitive. The order parameters are also utilized to distinguish regions of the NMR-derived three-dimensional structure of calbindin D9k that are poorly defined due to inherently high flexibility, from poorly defined regions with average flexibility but a low density of structural constraints.

PMID: 1591246 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Calcium-modulated S100 protein-phospholipid interactions. An NMR study of calbindin D
Calcium-modulated S100 protein-phospholipid interactions. An NMR study of calbindin D9k and DPC. Related Articles Calcium-modulated S100 protein-phospholipid interactions. An NMR study of calbindin D9k and DPC. Biochemistry. 2005 May 3;44(17):6502-12 Authors: Malmendal A, Vander Kooi CW, Nielsen NC, Chazin WJ The cellular functions of several S100 proteins involve specific interactions with phospholipids and the cell membrane. The interactions between calbindin D(9k) (S100D) and the detergent dodecyl phosphocholine (DPC) were studied using NMR...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR
Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation. Related Articles Backbone dynamics of the calcium-signaling protein apo-S100B as determined by 15N NMR relaxation. Biochemistry. 2001 Mar 27;40(12):3439-48 Authors: Inman KG, Baldisseri DM, Miller KE, Weber DJ Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N- NOE were measured for 80 of 91 backbone...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared
15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Related Articles 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Biochemistry. 1998 Jul 14;37(28):9964-75 Authors: Baldellon C, Alattia JR, Strub MP, Pauls T, Berchtold MW, Cavé A, Padilla A Dynamics of the rat alpha-parvalbumin calcium-loaded form have been determined by measurement of 15N nuclear relaxation using proton-detected heteronuclear NMR...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy. Related Articles Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy. Biochemistry. 1995 Dec 26;34(51):16608-17 Authors: Broadhurst RW, Hardman CH, Thomas JO, Laue ED The HMG-box sequence motif (approximately 80 residues) occurs in a number of abundant eukaryotic chromosomal proteins such as HMG1, which binds DNA without sequence specificity, but with "structure specificity", as well as in several sequence-specific transcription factors. HMG1...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurem
Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. Eur J Biochem. 1995 Jun 15;230(3):1014-24 Authors: Tjandra N, Kuboniwa H, Ren H, Bax A The backbone motions of calcium-free Xenopus calmodulin have been characterized by measurements of the 15N...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Backbone dynamics of trp repressor studied by 15N NMR relaxation. Related Articles Backbone dynamics of trp repressor studied by 15N NMR relaxation. Biochemistry. 1995 Apr 18;34(15):5212-23 Authors: Zheng Z, Czaplicki J, Jardetzky O Backbone dynamics of trp repressor, a 25 kDa DNA binding protein, have been studied using 15N relaxation data measured by proton-detected two-dimensional 1H-15N NMR spectroscopy. 15N spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and heteronuclear NOEs were determined for all visible backbone...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectr
Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy. Eur J Biochem. 1994 Feb 1;219(3):887-96 Authors: Orekhov VYu , Pervushin KV, Arseniev AS The backbone dynamics of a uniformly 15N-labelled proteolytic fragment (residues 1-71) of bacteriorhodopsin,...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectr
Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy. Eur J Biochem. 1994 Feb 1;219(3):887-96 Authors: Orekhov VYu , Pervushin KV, Arseniev AS The backbone dynamics of a uniformly 15N-labelled proteolytic fragment (residues 1-71) of bacteriorhodopsin,...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:20 PM.


Map