BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:41 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 17,582
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurem

Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.

Related Articles Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements.

Eur J Biochem. 1995 Jun 15;230(3):1014-24

Authors: Tjandra N, Kuboniwa H, Ren H, Bax A

The backbone motions of calcium-free Xenopus calmodulin have been characterized by measurements of the 15N longitudinal relaxation times (T1) at 51 and 61 MHz, and by conducting transverse relaxation (T2), spin-locked transverse relaxation (T1 rho), and 15N-[1H] heteronuclear NOE measurements at 61 MHz 15N frequency. Although backbone amide hydrogen exchange experiments indicate that the N-terminal domain is more stable than calmodulin's C-terminal half, slowly exchanging backbone amide protons are found in all eight alpha-helices and in three of the four short beta-strands. This confirms that the calcium-free form consists of stable secondary structure and does not adopt a 'molten globule' type of structure. However, the C-terminal domain of calmodulin is subject to conformational exchange on a time scale of about 350 microseconds, which affects many of the C-terminal domain residues. This results in significant shortening of the 15N T2 values relative to T1 rho, whereas the T1 rho and T2 values are of similar magnitude in the N-terminal half of the protein. A model in which the motion of the protein is assumed to be isotropic suggests a rotational correlation time for the protein of about 8 ns but quantitatively does not agree with the magnetic field dependence of the T1 values and does not explain the different T2 values found for different alpha-helices in the N-terminal domain. These latter parameters are compatible with a flexible dumb-bell model in which each of calmodulin's two domains freely diffuse in a cone with a semi-angle of about 30 degrees and a time constant of about 3 ns, whereas the overall rotation of the protein occurs on a much slower time scale of about 12 ns. The difference in the transverse relaxation rates observed between the amides in helices C and D suggests that the change in interhelical angle upon calcium binding is less than predicted by Herzberg et al. Strynadka and James [Strynadka, N. C. J. & James, M. N. G. (1988) Proteins Struct. Funct. Genet. 3, 1-17].

PMID: 7601131 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation
Active site dynamics in NADH oxidase from Thermus thermophilus studied by NMR spin relaxation Abstract We have characterized the backbone dynamics of NADH oxidase from Thermus thermophilus (NOX) using a recently-developed suite of NMR experiments designed to isolate exchange broadening, together with 15N R 1, R 1¤? , and {1H}-15N steady-state NOE relaxation measurements performed at 11.7 and 18.8 T. NOX is a 54 kDa homodimeric enzyme that belongs to a family of structurally homologous flavin reductases and nitroreductases with many potential biotechnology applications. Prior studies...
nmrlearner Journal club 0 09-30-2011 08:01 PM
[NMR paper] Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements.
Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Related Articles Backbone dynamics of the olfactory marker protein as studied by 15N NMR relaxation measurements. Biochemistry. 2005 Jul 19;44(28):9673-9 Authors: Gitti RK, Wright NT, Margolis JW, Varney KM, Weber DJ, Margolis FL Nuclear magnetic resonance (NMR) (15)N relaxation measurements of the olfactory marker protein (OMP) including longitudinal relaxation (T(1)), transverse relaxation (T(2)), and (15)N-{(1)H} NOE data were collected at low...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implicati
Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains. Related Articles Backbone dynamics of the human MIA protein studied by (15)N NMR relaxation: implications for extended interactions of SH3 domains. Protein Sci. 2003 Mar;12(3):510-9 Authors: Stoll R, Renner C, Buettner R, Voelter W, Bosserhoff AK, Holak TA The melanoma inhibitory activity (MIA) protein is a clinically valuable marker in patients with malignant melanoma as enhanced values diagnose metastatic...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy:
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Related Articles Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Biochemistry. 2000 Dec 26;39(51):15920-31 Authors: Fefeu S, Biekofsky RR, McCormick JE, Martin SR, Bayley PM, Feeney J The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Dynamics of stromelysin/inhibitor interactions studied by 15N NMR relaxation measurem
Dynamics of stromelysin/inhibitor interactions studied by 15N NMR relaxation measurements: comparison of ligand binding to the S1-S3 and S'1-S'3 subsites. Related Articles Dynamics of stromelysin/inhibitor interactions studied by 15N NMR relaxation measurements: comparison of ligand binding to the S1-S3 and S'1-S'3 subsites. J Biomol NMR. 1999 Sep;15(1):55-64 Authors: Yuan P, Marshall VP, Petzold GL, Poorman RA, Stockman BJ This report describes the backbone amide dynamics of the uniformly 15N labeled catalytic domain of human stromelysin...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared
15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Related Articles 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Biochemistry. 1998 Jul 14;37(28):9964-75 Authors: Baldellon C, Alattia JR, Strub MP, Pauls T, Berchtold MW, CavÚ A, Padilla A Dynamics of the rat alpha-parvalbumin calcium-loaded form have been determined by measurement of 15N nuclear relaxation using proton-detected heteronuclear NMR...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Backbone dynamics of trp repressor studied by 15N NMR relaxation.
Backbone dynamics of trp repressor studied by 15N NMR relaxation. Related Articles Backbone dynamics of trp repressor studied by 15N NMR relaxation. Biochemistry. 1995 Apr 18;34(15):5212-23 Authors: Zheng Z, Czaplicki J, Jardetzky O Backbone dynamics of trp repressor, a 25 kDa DNA binding protein, have been studied using 15N relaxation data measured by proton-detected two-dimensional 1H-15N NMR spectroscopy. 15N spin-lattice relaxation time (T1), spin-spin relaxation time (T2), and heteronuclear NOEs were determined for all visible backbone...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-d
Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Related Articles Backbone dynamics of calcium-loaded calbindin D9k studied by two-dimensional proton-detected 15N NMR spectroscopy. Biochemistry. 1992 May 26;31(20):4856-66 Authors: K├Ârdel J, Skelton NJ, Akke M, Palmer AG, Chazin WJ Backbone dynamics of calcium-loaded calbindin D9k have been investigated by two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy, using a uniformly 15N enriched...
nmrlearner Journal club 0 08-21-2010 11:41 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:16 AM.


Map