BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-04-2015, 03:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,048
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Solid-state NMR: An emerging technique in structural biology of self-assemblies.

Solid-state NMR: An emerging technique in structural biology of self-assemblies.

Related Articles Solid-state NMR: An emerging technique in structural biology of self-assemblies.

Biophys Chem. 2015 Jul 16;

Authors: Habenstein B, Loquet A

Abstract
Protein self-assemblies are ubiquitous biological systems involved in many cellular processes, ranging from bacterial and viral infection to the propagation of neurodegenerative disorders. Studying the atomic three-dimensional structures of protein self-assemblies is a particularly demanding task, as these systems are usually insoluble, non-crystalline and of large size. Solid-state NMR (ssNMR) is an emerging method that can provide atomic-level structural data on intact macromolecular assemblies. We here present recent progress in magic-angle spinning ssNMR to study protein assemblies and give an overview on its combination with complementary techniques such as cryo-EM, mass-per-length measurements, SAXS and X-ray diffraction. Applications of ssNMR on its own and in hybrid approaches have revealed precious atomic details and first high-resolution structures of complex biological assemblies, including amyloid fibrils, bacterial filaments, phages or virus capsids.


PMID: 26234527 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems
From The DNP-NMR Blog: Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems This review gives a comprehensive overview of the state-of-the-art of magic-angle spinning (MAS), solid-state NMR spectroscopy, including DNP-NMR spectroscopy. 1. Polenova, T., R. Gupta, and A. Goldbourt, Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem, 2015. 87(11): p. 5458-69.
nmrlearner News from NMR blogs 0 06-29-2015 07:21 PM
[NMR paper] Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes.
Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes. Related Articles Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes. J Magn Reson. 2014 Nov 15; Authors: Fricke P, Chevelkov V, Shi C, Lange A Abstract Solid-state NMR is a versatile tool to study structure and dynamics of insoluble and non-crystalline biopolymers. Supramolecular protein assemblies are formed by self-association of multiple copies of single small-sized...
nmrlearner Journal club 0 12-10-2014 06:29 PM
[NMR paper] Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes
Strategies for solid-state NMR investigations of supramolecular assemblies with large subunit sizes Publication date: Available online 15 November 2014 Source:Journal of Magnetic Resonance</br> Author(s): Pascal Fricke , Veniamin Chevelkov , Chaowei Shi , Adam Lange</br> Solid-state NMR is a versatile tool to study structure and dynamics of insoluble and non-crystalline biopolymers. Supramolecular protein assemblies are formed by self-association of multiple copies of single small-sized proteins. Because of their high degree of local order, solid-state NMR...
nmrlearner Journal club 0 11-16-2014 02:13 AM
Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology
From The DNP-NMR Blog: Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology Gelis, I., et al., Solid-state NMR enhanced by dynamic nuclear polarization as a novel tool for ribosome structural biology. J. Biomol. NMR, 2013. 56(2): p. 85-93. http://dx.doi.org/10.1007/s10858-013-9721-2
nmrlearner News from NMR blogs 0 09-09-2013 05:14 PM
Cu-SOD structure and dynamics by solid-state NMR [Biophysics and Computational Biology]
Cu-SOD structure and dynamics by solid-state NMR Knight, M. J., Pell, A. J., Bertini, I., Felli, I. C., Gonnelli, L., Pierattelli, R., Herrmann, T., Emsley, L., Pintacuda, G.... Date: 2012-07-10 We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with 1H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of 15N and 13C nuclear relaxation rates. The system on which we demonstrate these methods is the...
nmrlearner Journal club 0 07-10-2012 06:01 PM
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method [Biophysics and Computational Biology]
Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method Verardi, R., Shi, L., Traaseth, N. J., Walsh, N., Veglia, G.... Date: 2011-05-31 Phospholamban (PLN) is a type II membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA), thereby regulating calcium homeostasis in cardiac muscle. In membranes, PLN forms pentamers that have been proposed to function either as a storage for active monomers or as ion channels. Here, we report the T-state structure of pentameric PLN solved by a hybrid solution and...
nmrlearner Journal club 0 05-31-2011 11:41 PM
(13)C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies.
(13)C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies. (13)C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies. J Am Chem Soc. 2011 Mar 14; Authors: Loquet A, Lv G, Giller K, Becker S, Lange A A strategy for simplified and complete resonance assignment of insoluble and noncrystalline proteins by solid-state NMR (ssNMR) spectroscopy is presented. Proteins produced with - or glucose are very sparsely labeled, and the...
nmrlearner Journal club 0 03-16-2011 04:15 PM
13C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies
13C Spin Dilution for Simplified and Complete Solid-State NMR Resonance Assignment of Insoluble Biological Assemblies Antoine Loquet, Guohua Lv, Karin Giller, Stefan Becker and Adam Lange http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja200066s/aop/images/medium/ja-2011-00066s_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja200066s http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/aFxzgJtJWtI
nmrlearner Journal club 0 03-15-2011 05:56 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:59 AM.


Map