BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-27-2015, 11:59 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 20,165
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide

Optimized co-solute paramagnetic relaxation enhancement for the rapid NMR analysis of a highly fibrillogenic peptide

Abstract

Co-solute paramagnetic relaxation enhancement (PRE) is an attractive way to speed up data acquisition in NMR spectroscopy by shortening the T 1 relaxation time of the nucleus of interest and thus the necessary recycle delay. Here, we present the rationale to utilize high-spin iron(III) as the optimal transition metal for this purpose and characterize the properties of its neutral chelate form Fe(DO3A) as a suitable PRE agent. Fe(DO3A) effectively reduces the T 1 values across the entire sequence of the intrinsically disordered protein α-synuclein with negligible impact on line width. The agent is better suited than currently used alternatives, shows no specific interaction with the polypeptide chain and, due to its high relaxivity, is effective at low concentrations and in ??proton-less?? NMR experiments. By using Fe(DO3A) we were able to complete the backbone resonance assignment of a highly fibrillogenic peptide from α1-antitrypsin by acquiring the necessary suite of multidimensional NMR datasets in 3*h.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement.
Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement. Related Articles Ligand orientation in a membrane-embedded receptor site revealed by solid-state NMR with paramagnetic relaxation enhancement. Org Biomol Chem. 2015 Jan 13; Authors: Whittaker CA, Patching SG, Esmann M, Middleton DA Abstract NMR relaxation enhancement by paramagnetic metals provides powerful restraints on the three-dimensional structures of proteins in solution, and this approach has...
nmrlearner Journal club 0 01-15-2015 06:10 PM
Requirements on Paramagnetic Relaxation Enhancement Data for Membrane Protein Structure Determination by NMR
Requirements on Paramagnetic Relaxation Enhancement Data for Membrane Protein Structure Determination by NMR 6 June 2012 Publication year: 2012 Source:Structure, Volume 20, Issue 6</br> </br> Nuclear magnetic resonance (NMR) structure calculations of the ?-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5* in the absence of other long-range conformational restraints. Our...
nmrlearner Journal club 0 02-03-2013 10:13 AM
[Question from NMRWiki Q&A forum] why we are seeing negative PREs in paramagnetic relaxation enhancement experiment?
why we are seeing negative PREs in paramagnetic relaxation enhancement experiment? Hi NMR Wiki users, I'm using two point method(Marius Clore and Junji Iwahara methods) to measure the PREs, but in my experiment I observed so many negative PREs. Is there any chance to use these negative PREs data in structure calculation.How can I get all positive PREs,otherwise I lose half of the data in my calculations. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 12-11-2012 07:30 PM
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins
Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line...
nmrlearner Journal club 0 10-21-2011 10:04 PM
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement.
Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. Solid-State NMR of a Large Membrane Protein by Paramagnetic Relaxation Enhancement. J Phys Chem Lett. 2011 Jul 21;2(14):1836-1841 Authors: Tang M, Berthold DA, Rienstra CM Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is...
nmrlearner Journal club 0 08-16-2011 01:19 PM
[Question from NMRWiki Q&A forum] Relaxation editing vr paramagnetic relaxation enhancement experiments - 13C CP-MAS NM
Relaxation editing vr paramagnetic relaxation enhancement experiments - 13C CP-MAS NMR I am a beginner in NMR spectroscopy and I would like to learn more about relaxation editing experiments vs PRE. A colleague of mine is doing the 13C CP-MAS NMR experim. and he using cellulose II powder, regenerated cellulose and milled reg cellulose. We are interested in C4 resonance of cellulose II, good resolved resonance, to better understand the supramolecular structure of cellulose II. As experiments: long relaxation experiments - PRE with aqueous CuSO4 solution of certain concentration, does the...
nmrlearner News from other NMR forums 0 10-15-2010 05:16 PM
Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phosph
Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson. 2010 Aug 24; Authors: Chu S, Maltsev S, Emwas AH, Lorigan GA A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE)...
nmrlearner Journal club 0 09-22-2010 05:27 AM
[Question from NMRWiki Q&A forum] Does anyone know something about paramagnetic relaxation enhancement (PRE)?
Does anyone know something about paramagnetic relaxation enhancement (PRE)? Does anyone know something about paramagnetic relaxation enhancement (PRE)? i would like to try this method on my cellulose materials. What info can you take out of it? Thank you very much. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 09-08-2010 12:08 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:07 AM.


Map