BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-21-2011, 10:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 20,040
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins

Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins


Abstract We report enhanced sensitivity NMR measurements of intrinsically disordered proteins in the presence of paramagnetic relaxation enhancement (PRE) agents such as Ni2+-chelated DO2A. In proton-detected 1H-15N SOFAST-HMQC and carbon-detected (H-flip)13CO-15N experiments, faster longitudinal relaxation enables the usage of even shorter interscan delays. This results in higher NMR signal intensities per units of experimental time, without adverse line broadening effects. At 40 mmol·Lâ??1 of the PRE agent, we obtain a 1.7- to 1.9-fold larger signal to noise (S/N) for the respective 2D NMR experiments. High solvent accessibility of intrinsically disordered protein (IDP) residues renders this class of proteins particularly amenable to the outlined approach.
  • Content Type Journal Article
  • Category Article
  • Pages 1-9
  • DOI 10.1007/s10858-011-9577-2
  • Authors
    • François-Xavier Theillet, Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
    • Andres Binolfi, Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
    • Stamatis Liokatis, Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
    • Silvia Verzini, Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany
    • Philipp Selenko, Department of NMR-assisted Structural Biology, In-cell NMR Group, Leibniz Institute of Molecular Pharmacology (FMP), Robert-Roessle Str. 10, 13125 Berlin, Germany

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins
High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins Abstract Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase...
nmrlearner Journal club 0 02-21-2012 03:40 AM
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy
Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methylâ??methyl nuclear overhauser enhancement spectroscopy Abstract Methyl-transverse relaxation optimized spectroscopy is rapidly becoming the preferred NMR technique for probing structure and dynamics of very large proteins up to ~1 MDa in molecular size. Data interpretation, however, necessitates assignment of methyl groups which still presents a very challenging and time-consuming process. Here we demonstrate that, in combination with a known 3D structure, paramagnetic...
nmrlearner Journal club 0 09-26-2011 06:42 AM
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. J Biol Chem. 2011 Apr 20; Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner Journal club 0 04-22-2011 02:00 PM
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins.
ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins. ncIDP-assign: A SPARKY extension for the effective NMR assignment of intrinsically disordered proteins. Bioinformatics. 2011 Mar 3; Authors: Tamiola K, Mulder FA SUMMARY: We describe here the ncIDP-assign extension for the popular NMR assignment programme SPARKY, which aids in the sequence-specific resonance assignment of intrinsically disordered proteins (IDPs). The assignment plugin greatly facilitates the effective matching of a set of...
nmrlearner Journal club 0 03-05-2011 01:02 PM
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins
Extension of the HA-detection based approach: (HCA)CON(CA)H and (HCA)NCO(CA)H experiments for the main-chain assignment of intrinsically disordered proteins Abstract Extensive resonance overlap exacerbates assignment of intrinsically disordered proteins (IDPs). This issue can be circumvented by utilizing 15N, 13C� and 1HN spins, where the chemical shift dispersion is mainly dictated by the characteristics of consecutive amino acid residues. Especially 15N and 13C� spins offer superior chemical shift dispersion in comparison to 13Cα and 13Cβ spins. However, HN-detected experiments...
nmrlearner Journal club 0 01-29-2011 05:31 AM
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH
Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH Abstract Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins. The quality of the secondary chemical shifts is dependent on an appropriate choice of random coil chemical shifts. We report random coil chemical shifts and sequence correction factors determined for a GGXGG peptide series following the approach of Schwarzinger et al. (J Am Chem Soc 123(13):2970â??2978, 2001). The chemical shifts are...
nmrlearner Journal club 0 01-17-2011 02:40 AM
[Question from NMRWiki Q&A forum] Relaxation editing vr paramagnetic relaxation enhancement experiments - 13C CP-MAS NM
Relaxation editing vr paramagnetic relaxation enhancement experiments - 13C CP-MAS NMR I am a beginner in NMR spectroscopy and I would like to learn more about relaxation editing experiments vs PRE. A colleague of mine is doing the 13C CP-MAS NMR experim. and he using cellulose II powder, regenerated cellulose and milled reg cellulose. We are interested in C4 resonance of cellulose II, good resolved resonance, to better understand the supramolecular structure of cellulose II. As experiments: long relaxation experiments - PRE with aqueous CuSO4 solution of certain concentration, does the...
nmrlearner News from other NMR forums 0 10-15-2010 05:16 PM
[Question from NMRWiki Q&A forum] Does anyone know something about paramagnetic relaxation enhancement (PRE)?
Does anyone know something about paramagnetic relaxation enhancement (PRE)? Does anyone know something about paramagnetic relaxation enhancement (PRE)? i would like to try this method on my cellulose materials. What info can you take out of it? Thank you very much. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 09-08-2010 12:08 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:33 AM.


Map