BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-09-2015, 11:49 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,236
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Formation of periodic ?-turns in ?/?-hybrid peptides: DFT and NMR experimental evidence.

Formation of periodic ?-turns in ?/?-hybrid peptides: DFT and NMR experimental evidence.

Related Articles Formation of periodic ?-turns in ?/?-hybrid peptides: DFT and NMR experimental evidence.

Chem Asian J. 2014 Feb;9(2):457-61

Authors: Chandrasekhar S, Rao KV, Seenaiah M, Naresh P, Devi AS, Jagadeesh B

Abstract
Hybrid peptidic oligomers comprising natural and unnatural amino acid residues that can exhibit biomolecular folding and hydrogen-bonding mimicry have attracted considerable interest in recent years. While a variety of hybrid peptidic helices have been reported in the literature, other secondary structural patterns such as ?-turns and ribbons have not been well explored so far. The present work reports the design of novel periodic ?-turns in the oligomers of 1:1 natural-?/unnatural trans-?-norborenene (TNAA) amino acid residues. Through DFT, NMR, and MD studies, it is convincingly shown that, in the mixed conformational pool, the heterogeneous backbone of the hybrid peptides preferentially adopt periodic 8-membered (pseudo ?-turn)/7-membered (inverse ?-turn) hydrogen bonds in both polar and non-polar solvent media. It is observed that the stereochemistry and local conformational preference of the ?-amino acid building blocks have a profound influence on accessing the specific secondary fold. These findings may be of significant relevance for the development of molecular scaffolds that facilitate desired positioning of functional side-chains.


PMID: 24203635 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Impact of structural differences in carcinopreventive agents Indole-3-carbinol and 3,3'- diindolylmethane on biological activity. An X-ray, (1)H-(14)N NQDR, (13)C CP/MAS NMR, and Periodic Hybrid DFT Study.
Impact of structural differences in carcinopreventive agents Indole-3-carbinol and 3,3'- diindolylmethane on biological activity. An X-ray, (1)H-(14)N NQDR, (13)C CP/MAS NMR, and Periodic Hybrid DFT Study. Related Articles Impact of structural differences in carcinopreventive agents Indole-3-carbinol and 3,3'- diindolylmethane on biological activity. An X-ray, (1)H-(14)N NQDR, (13)C CP/MAS NMR, and Periodic Hybrid DFT Study. Eur J Pharm Sci. 2015 Jun 8; Authors: Latosi?ska JN, Latosi?ska M, Szafra?ski M, Seliger J, agar V, Burchardt DV ...
nmrlearner Journal club 0 06-13-2015 11:09 PM
Type I and II β-turns prediction using NMR chemical shifts
Type I and II β-turns prediction using NMR chemical shifts Abstract A method for predicting type I and II β-turns using nuclear magnetic resonance (NMR) chemical shifts is proposed. Isolated β-turn chemical-shift data were collected from 1,798 protein chains. One-dimensional statistical analyses on chemical-shift data of three classes β-turn (type I, II, and VIII) showed different distributions at four positions, (i) to (i*+*3). Considering the central two residues of type I β-turns, the mean values of Cο, Cα, HN, and NH chemical shifts...
nmrlearner Journal club 0 06-19-2014 10:21 PM
[NMR paper] Type I and II ?-turns prediction using NMR chemical shifts.
Type I and II ?-turns prediction using NMR chemical shifts. Related Articles Type I and II ?-turns prediction using NMR chemical shifts. J Biomol NMR. 2014 May 17; Authors: Wang CC, Lai WC, Chuang WJ Abstract
nmrlearner Journal club 0 05-20-2014 11:10 PM
Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy
From The DNP-NMR Blog: Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy Gruning, W.R., et al., Molecular-level characterization of the structure and the surface chemistry of periodic mesoporous organosilicates using DNP-surface enhanced NMR spectroscopy. Phys Chem Chem Phys, 2013. 15(32): p. 13270-4. http://www.ncbi.nlm.nih.gov/pubmed/23440402
nmrlearner News from NMR blogs 0 07-29-2013 08:22 PM
[NMR paper] Proton NMR study of peptides from myelin basic protein: evidence for Lys74-His77 inte
Proton NMR study of peptides from myelin basic protein: evidence for Lys74-His77 interaction revealed from histidine line broadening. Related Articles Proton NMR study of peptides from myelin basic protein: evidence for Lys74-His77 interaction revealed from histidine line broadening. Biochim Biophys Acta. 1996 Mar 7;1293(1):23-30 Authors: Koshy KM, Hashim GA, Boggs JM Residues 69-84 of guinea pig myelin basic protein contain the encephalitogenic determinant for the Lewis rat. Insertion of histidine and glycine at positions 77 and 78 in bovine...
nmrlearner Journal club 0 08-22-2010 02:27 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:42 AM.


Map