BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-28-2020, 09:39 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 19,893
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.

Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.

Related Articles Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations.

J Mol Biol. 2020 Jun 24;:

Authors: Kwon B, Mandal T, Elkins MR, Oh Y, Cui Q, Hong M

Abstract
HIV-1 entry into cells is mediated by the fusion protein gp41. Cholesterol plays an important role in this virus-cell fusion, but molecular structural information about cholesterol-gp41 interaction is so far absent. Here, we present experimental and computational data about cholesterol complexation with gp41 in lipid bilayers. We focus on the C-terminal region of the protein, which comprises a membrane-proximal external region (MPER) and the transmembrane domain (TMD). We measured peptide-cholesterol contacts in virus-mimetic lipid bilayers using solid-state NMR spectroscopy, and augmented these experimental data with all-atom molecular dynamics simulations. 2D 19F NMR spectra show correlation peaks between MPER residues and the cholesterol isooctyl tail, indicating that cholesterol is in molecular contact with the MPER-TMD trimer. 19F-13C distance measurements between the peptide and 13C-labeled cholesterol show that C17 on the D ring and C9 at the intersection of B and C rings are ~7.0 from the F673 sidechain 4-19F. At high peptide concentrations in the membrane, the 19F-13C distance data indicate three cholesterol molecules bound near F673 in each trimer. Mutation of a cholesterol-recognition amino acid consensus (CRAC) motif did not change these distances, indicating that cholesterol binding does not require this sequence motif. Molecular dynamics simulations further identify two hotspots for cholesterol interactions. Taken together, these experimental data and simulations indicate that the helix-turn-helix conformation of the MPER-TMD is responsible for sequestering cholesterol. We propose that this gp41-cholesterol interaction mediates virus-cell fusion by recruiting gp41 to the boundary of the liquid-disordered and liquid-ordered phases to incur membrane curvature.


PMID: 32592698 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity.
Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity. Related Articles Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity. J Mol Biol. 2018 Jan 09;: Authors: Lee M, Yao H, Kwon B, Waring AJ, Ruchala P,...
nmrlearner Journal club 0 01-14-2018 05:13 PM
Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity
Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity Publication date: Available online 10 January 2018 Source:Journal of Molecular Biology</br> Author(s): Myungwoon Lee, Hongwei Yao, Byungsu Kwon, Alan J. Waring, Peter Ruchala, Chandan Singh, Mei Hong</br> Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While...
nmrlearner Journal club 0 01-10-2018 12:45 PM
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR [Biophysics and Computational Biology]
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR Matthew R. Elkins, Jonathan K. Williams, Martin D. Gelenter, Peng Dai, Byungsu Kwon, Ivan V. Sergeyev, Bradley L. Pentelute, Mei Hong... Date: 2017-12-05 The influenza M2 protein not only forms a proton channel but also mediates membrane scission in a cholesterol-dependent manner to cause virus budding and release. The atomic interaction of cholesterol with M2, as with most eukaryotic membrane proteins, has long been elusive. We have now determined the cholesterol-binding site of... Read More ...
nmrlearner Journal club 0 12-06-2017 08:02 AM
[NMR paper] Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. Proc Natl Acad Sci U S A. 2017 Nov 20;: Authors: Elkins MR, Williams JK, Gelenter MD, Dai P, Kwon B, Sergeyev IV, Pentelute BL, Hong M Abstract The influenza M2 protein not only forms a proton channel but also mediates membrane scission in a cholesterol-dependent manner to cause virus budding and release. The atomic interaction of cholesterol...
nmrlearner Journal club 0 11-22-2017 02:01 PM
[NMR paper] Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state. Related Articles Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state. J Mol Biol. 2013 Nov 15; Authors: Sackett K, Nethercott MJ, Zheng Z, Weliky DP Abstract The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although...
nmrlearner Journal club 0 11-20-2013 12:52 PM
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state Publication date: Available online 16 November 2013 Source:Journal of Molecular Biology</br> Author(s): Kelly Sackett , Matthew J. Nethercott , Zhaoxiong Zheng , David P. Weliky</br> The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not...
nmrlearner Journal club 0 11-16-2013 03:14 PM
[NMR paper] Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations.
Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Structure and dynamics of the two amphipathic arginine-rich peptides RW9 and RL9 in a lipid environment investigated by solid-state NMR and MD simulations. Biochim Biophys Acta. 2013 Feb;1828(2):824-33 Authors: Witte K, Olausson BE, Walrant A, Alves ID, Vogel A ...
nmrlearner Journal club 0 04-05-2013 10:53 AM
[NMR paper] Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy. PLoS One. 2012;7(10):e47745 Authors: Bertelsen K,...
nmrlearner Journal club 0 04-02-2013 07:23 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:33 AM.


Map