BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-10-2018, 12:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,135
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity

Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity

Publication date: Available online 10 January 2018
Source:Journal of Molecular Biology

Author(s): Myungwoon Lee, Hongwei Yao, Byungsu Kwon, Alan J. Waring, Peter Ruchala, Chandan Singh, Mei Hong

Enveloped viruses enter cells by using their fusion proteins to merge the virus lipid envelope and the cell membrane. While crystal structures of the water-soluble ectodomains of many viral fusion proteins have been determined, the structure and assembly of the C-terminal transmembrane domain (TMD) remains poorly understood. Here we use solid-state NMR to determine the backbone conformation and oligomeric structure of the TMD of the parainfluenza virus 5 (PIV5) fusion protein. 13C chemical shifts indicate that the central leucine-rich segment of the TMD is ?-helical in POPC/cholesterol membranes and POPE membranes, while the Ile- and Val-rich termini shift to the ?-strand conformation in the POPE membrane. Importantly, lipid-mixing assays indicate that the TMD is more fusogenic in the POPE membrane than in the POPC/cholesterol membrane, indicating that the ?-strand conformation is important for fusion by inducing membrane curvature. Incorporation of para-fluorinated Phe at three positions of the ?-helical core allowed us to measure interhelical distances using 19F spin diffusion NMR. The data indicate that, at peptide: lipid molar ratios of ~1: 15, the TMD forms a trimeric helical bundle with inter-helical distances of 8.2–8.4Å for L493F and L504F and 10.5Å for L500F. These data provide high-resolution evidence of trimer formation of a viral fusion protein TMD in phospholipid bilayers, and indicate that the PIV5 fusion protein TMD harbors two functions: the central ?-helical core is the trimerization unit of the protein while the two termini are responsible for inducing membrane curvature by transitioning to a ?-sheet conformation.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion
NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion Publication date: February 2018 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes, Volume 1860, Issue 2</br> Author(s): Mukesh Mahajan, Deepak Chatterjee, Kannaian Bhuvaneswari, Shubhadra Pillay, Surajit Bhattacharjya</br> The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A...
nmrlearner Journal club 0 11-23-2017 08:38 AM
Solid-State Nuclear Magnetic Resonance Investigationof the Structural Topology and Lipid Interactions of a Viral FusionProtein Chimera Containing the Fusion Peptide and Transmembrane Domain
Solid-State Nuclear Magnetic Resonance Investigationof the Structural Topology and Lipid Interactions of a Viral FusionProtein Chimera Containing the Fusion Peptide and Transmembrane Domain http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.6b00568/20161129/images/medium/bi-2016-00568y_0011.gif Biochemistry DOI: 10.1021/acs.biochem.6b00568 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/pRCoWBLESQ0 More...
nmrlearner Journal club 0 11-29-2016 09:02 PM
[NMR paper] NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion.
NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion. NMR structures and localization of the potential fusion peptides and the pre-transmembrane region of SARS-CoV: Implications in membrane fusion. Biochim Biophys Acta. 2014 Dec 2; Authors: Mahajan M, Bhattacharjya S Abstract Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) poses a serious public health hazard. The S2 subunit of the S glycoprotein of SARS-CoV carries out...
nmrlearner Journal club 0 12-06-2014 05:18 PM
Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes from Solid-State NMR
Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes from Solid-State NMR Hongwei Yao and Mei Hong http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4121956/aop/images/medium/ja-2013-121956_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja4121956 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/ND8oy78Fk1s
nmrlearner Journal club 0 01-31-2014 05:55 AM
[NMR paper] Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes From Solid-State NMR.
Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes From Solid-State NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Conformation and Lipid Interaction of the Fusion Peptide of the Paramyxovirus PIV5 in Anionic and Negative-Curvature Membranes From Solid-State NMR. J Am Chem Soc. 2014 Jan 16; Authors: Yao H, Hong M Abstract Viral fusion proteins catalyze the merger of the virus...
nmrlearner Journal club 0 01-17-2014 11:07 PM
[NMR paper] Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state.
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state. Related Articles Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state. J Mol Biol. 2013 Nov 15; Authors: Sackett K, Nethercott MJ, Zheng Z, Weliky DP Abstract The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although...
nmrlearner Journal club 0 11-20-2013 12:52 PM
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state
Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel ? sheet fusion peptide structure in the final six-helix bundle state Publication date: Available online 16 November 2013 Source:Journal of Molecular Biology</br> Author(s): Kelly Sackett , Matthew J. Nethercott , Zhaoxiong Zheng , David P. Weliky</br> The HIV gp41 protein catalyzes fusion between viral and target cell membranes. Although the ~20-residue N-terminal fusion peptide (FP) region is critical for fusion, the structure of this region is not...
nmrlearner Journal club 0 11-16-2013 03:14 PM
NMR Structure, Localization,and Vesicle Fusion of Chikungunya Virus Fusion Peptide
NMR Structure, Localization,and Vesicle Fusion of Chikungunya Virus Fusion Peptide http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi300901f/aop/images/medium/bi-2012-00901f_0009.gif Biochemistry DOI: 10.1021/bi300901f http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/CLSzgXkx2u4 More...
nmrlearner Journal club 0 09-27-2012 03:39 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:00 AM.


Map