BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > Online News
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 12-28-2023, 10:50 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,197
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems - ScienceDirect

Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems - ScienceDirect

Nuclear magnetic resonance/single molecule fluorescence combinations to study dynamic protein systems ScienceDirect Read here
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Conformational dynamics and kinetics of protein interactions by nuclear magnetic resonance - ScienceDirect
Conformational dynamics and kinetics of protein interactions by nuclear magnetic resonance ScienceDirect Conformational dynamics and kinetics of protein interactions by nuclear magnetic resonance - ScienceDirect More...
nmrlearner Online News 0 05-13-2023 02:21 PM
[NMR paper] Production of human A2AAR in lipid nanodiscs for 19F-NMR and single-molecule fluorescence spectroscopy
Production of human A2AAR in lipid nanodiscs for 19F-NMR and single-molecule fluorescence spectroscopy We describe production of the human A(2A) adenosine receptor (A(2A)AR), a class A G protein-coupled receptor (GPCR) for ^(19)F-NMR and single-molecule fluorescence (SMF) spectroscopy. We explain in detail steps shared between the two sample preparation strategies, including expression and isolation of A(2A)AR and assembly of A(2A)AR in lipid nanodiscs and procedures for incorporation of either ^(19)F-NMR or fluorescence probes. Protocols for SMF experiments include sample setup, data... ...
nmrlearner Journal club 0 07-17-2022 10:07 PM
[NMR paper] Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins
Synergies of Single Molecule Fluorescence and NMR for the Study of Intrinsically Disordered Proteins Single molecule fluorescence and nuclear magnetic resonance spectroscopy (NMR) are two very powerful techniques for the analysis of intrinsically disordered proteins (IDPs). Both techniques have individually made major contributions to deciphering the complex properties of IDPs and their interactions, and it has become evident that they can provide very complementary views on the distance-dynamics relationships of IDP systems. We now review the first approaches using both NMR and single...
nmrlearner Journal club 0 01-22-2022 02:38 AM
New NIH grant supports single molecule study of protein key to Alzheimer 's disease - EurekAlert
New NIH grant supports single molecule study of protein key to Alzheimer 's disease EurekAlert New NIH grant supports single molecule study of protein key to Alzheimer 's disease - EurekAlert More...
nmrlearner Online News 0 01-27-2021 04:52 AM
[NMR paper] Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2
Single-Molecule Force Spectroscopy Trajectories of a Single Protein and Its Polyproteins Are Equivalent: A Direct Experimental Validation Based on A Small Protein NuG2 Single-molecule force spectroscopy (SMFS) has become a powerful tool in investigating the mechanical unfolding/folding of proteins at the single-molecule level. Polyproteins made of tandem identical repeats have been widely used in atomic force microscopy (AFM)-based SMFS studies, where polyproteins not only serve as fingerprints to identify single-molecule stretching events, but may also improve statistics of data...
nmrlearner Journal club 0 12-27-2016 11:04 PM
[NMR paper] Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR.
Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. Gradual Disordering of the Native State on a Slow Two-State Folding Protein Monitored by Single-Molecule Fluorescence Spectroscopy and NMR. J Phys Chem B. 2013 Jun 24; Authors: Campos LA, Sadqi M, Liu J, Wang X, English DS, Munoz V Abstract Theory predicts that folding free energy landscapes are intrinsically malleable, and as such are expected to respond to perturbations in topographically complex...
nmrlearner Journal club 0 06-27-2013 01:52 AM
[NMR tweet] #Dynamic #Nuclear #Magnetic http://t.co/1GtWD00E8z Dynamic Nuclear Magnetic Resonance Spectroscopy
#Dynamic #Nuclear #Magnetic http://t.co/1GtWD00E8z Dynamic Nuclear Magnetic Resonance Spectroscopy Published by openbdb (openbdb) on 2013-04-26T22:51:07Z Source: Twitter
nmrlearner Twitter NMR 0 04-27-2013 01:19 AM
[NMR paper] (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamic
(13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin. Related Articles (13)C-(1)H NMR relaxation and fluorescence anisotropy decay study of tyrosine dynamics in motilin. Biophys J. 2002 Nov;83(5):2812-25 Authors: Damberg P, Jarvet J, Allard P, Mets U, Rigler R, Gräslund A Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C...
nmrlearner Journal club 0 11-24-2010 08:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:48 PM.


Map