BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from other NMR forums
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-17-2013, 08:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Why is HNCO the most sensitive Spectrum?

Why is HNCO the most sensitive Spectrum?

I would like to know where the advantages of the HNCO spectrum stem from. I read that it is the most sensitive multi-D NMR spectrum, but all i know is, that it produces an absorptive spectrum, which is an obvious advantage.

Can someone explain to me why it is the most sensitive 3D-NMR spectrum and why it is popular?



Check if somebody has answered this question on NMRWiki QA forum
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A pH-Sensitive, Colorful,Lanthanide-Chelating ParamagneticNMR Probe
A pH-Sensitive, Colorful,Lanthanide-Chelating ParamagneticNMR Probe Wei-Min Liu, Peter H. J. Keizers, Mathias A. S. Hass, Anneloes Blok, Monika Timmer, Alexi J. C. Sarris, Mark Overhand and Marcellus Ubbink http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja307824e/aop/images/medium/ja-2012-07824e_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja307824e http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/NuKda-fEQQ4
nmrlearner Journal club 0 10-10-2012 03:14 PM
Triple Resonance Cross-Polarization for More Sensitive (13) C MAS NMR Spectroscopy of Deuterated Proteins.
Triple Resonance Cross-Polarization for More Sensitive (13) C MAS NMR Spectroscopy of Deuterated Proteins. Triple Resonance Cross-Polarization for More Sensitive (13) C MAS NMR Spectroscopy of Deuterated Proteins. Chemphyschem. 2011 Jun 8; Authors: Akbey U, Camponeschi F, van Rossum BJ, Oschkinat H
nmrlearner Journal club 0 06-10-2011 11:52 AM
[NMR paper] TINS, target immobilized NMR screening: an efficient and sensitive method for ligand
TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Related Articles TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol. 2005 Feb;12(2):207-16 Authors: Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, Hollander JG, Filippov DV, Hajduk PJ, Siegal G We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid
Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. Related Articles Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J Am Chem Soc. 2003 Dec 24;125(51):15831-6 Authors: Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW A new indirect detection scheme for obtaining (15)N/(1)H shift correlation spectra in crystalline proteins is described. Excellent water suppression is achieved without the need for pulsed field gradients, and using only a...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mu
Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein. Related Articles Three-dimensional solution NMR structure of Apo-L75F-TrpR, a temperature-sensitive mutant of the tryptophan repressor protein. Biochemistry. 2002 Oct 8;41(40):11954-62 Authors: Tyler R, Pelczer I, Carey J, Copié V L75F-TrpR is a temperature-sensitive mutant of the tryptophan repressor protein of Escherichia coli in which surface-exposed residue leucine 75 in the DNA binding domain is replaced with...
nmrlearner Journal club 0 11-24-2010 08:58 PM
24-SEMA as a Sensitive and Offset Compensated SLF Sequence
24-SEMA as a Sensitive and Offset Compensated SLF Sequence Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 3 September 2010</br> S., Jayanthi , N., Sinha , K.V., Ramanathan</br> Separated Local Field (SLF) spectroscopy is a powerful tool for the determination of structure and dynamics of oriented systems such as membrane proteins oriented in lipid bilayers and liquid crystals. Of many SLF techniques available, Polarization Inversion Spin Exchange at Magic Angle (PISEMA) has found wide application due to its many favorable...
nmrlearner Journal club 0 09-04-2010 06:53 AM
MQ-HNCO-TROSY for the measurement of scalar and residual dipolar couplings in larger
Abstract We describe a novel pulse sequence, MQ-HNCO-TROSY, for the measurement of scalar and residual dipolar couplings between amide proton and nitrogen in larger proteins. The experiment utilizes the whole 2TN polarization transfer delay for labeling of 15N chemical shift in a constant time manner, which efficiently doubles the attainable resolution in 15N dimension with respect to the conventional HNCO-TROSY experiment. In addition, the accordion principle is employed for measuring (J + D)NHs, and the multiplet components are selected with the generalized version of the TROSY scheme...
nmrlearner Journal club 0 08-14-2010 04:19 AM
HNCO-based measurement of one-bond amide 15N-1H couplings with optimized precision
Abstract A pair of 3D HNCO-based experiments have been developed with the aim of optimizing the precision of measurement of 1JNH couplings. Both pulse sequences record 1JNH coupling evolution during the entire constant time interval that 15N magnetization is dephasing or rephasing with respect to the directly bonded 13Câ?² nucleus, with 15N13Câ?² multiple quantum coherence maintained during the 13Câ?² evolution period. The first experiment, designed for smaller proteins, produces an apparent doubling of the 1JNH coupling without any accompanying increases in line width. The second experiment...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:42 AM.


Map