BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 07-17-2015, 03:02 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Sensitivity of nonuniform sampling NMR

From The DNP-NMR Blog:

Sensitivity of nonuniform sampling NMR


This is not an article directly related to DNP, however, non-uniform sampling is another great technique to enhance sensitivity in a NMR experiment. The concept can easily combined with DNP to yield even higher sensitivity enhancement factors.






Palmer, M.R., et al., Sensitivity of nonuniform sampling NMR. J Phys Chem B, 2015. 119(22): p. 6502-15.


http://www.ncbi.nlm.nih.gov/pubmed/25901905


Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Erratum to “Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR” [Prog. Nucl. Magn. Reson. Spectrosc. 83 (2014) 21–41]
Erratum to “Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR” Publication date: Available online 25 March 2015 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Mehdi Mobli , Jeffrey C. Hoch</br> </br></br> </br></br>
nmrlearner Journal club 0 04-12-2015 02:40 AM
Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR
Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR Publication date: Available online 13 October 2014 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Mehdi Mobli , Jeffrey C. Hoch</br> Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (the free induction decay, FID) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform (DFT), the intervals are kept...
nmrlearner Journal club 0 10-14-2014 04:35 AM
Solid-StateNMR Structure Determination from Diagonal-Compensated,Sparsely Nonuniform-Sampled 4D Proton–Proton Restraints
Solid-StateNMR Structure Determination from Diagonal-Compensated,Sparsely Nonuniform-Sampled 4D Proton–Proton Restraints Rasmus Linser, Benjamin Bardiaux, Loren B. Andreas, Sven G. Hyberts, Vanessa K. Morris, Guido Pintacuda, Margaret Sunde, Ann H. Kwan and Gerhard Wagner http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja504603g/aop/images/medium/ja-2014-04603g_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja504603g http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 07-25-2014 06:55 PM
[NMR paper] Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR.
Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR. Related Articles Performance tuning non-uniform sampling for sensitivity enhancement of signal-limited biological NMR. J Biomol NMR. 2014 Mar 29; Authors: Palmer MR, Wenrich BR, Stahlfeld P, Rovnyak D Abstract Non-uniform sampling (NUS) has been established as a route to obtaining true sensitivity enhancements when recording indirect dimensions of decaying signals in the same total experimental time as traditional uniform...
nmrlearner Journal club 0 04-01-2014 02:47 PM
[NMR analysis blog] Non Uniform Sampling (NUS) NMR Processing
Non Uniform Sampling (NUS) NMR Processing Background In the last few years, Non-Uniform Sampling (NUS) has emerged as a very powerful tool to significantly speed up the acquisition of multidimensional NMR experiments due to the fact that only a subset of the usual linearly sampled data in the Nyquist grid is measured. Unfortunately, this fast acquisition modality introduces a new challenge as the normal Fourier Transform will fail and consequently, special processing techniques are required. A number of sophisticated methods have been proposed for reconstructing sparsely sampled 2D...
nmrlearner News from NMR blogs 0 12-21-2013 03:15 PM
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR June 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 219</br> </br> Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional manner by the...
nmrlearner Journal club 0 02-03-2013 10:13 AM
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR
An analysis of NMR sensitivity enhancements obtained using non-uniform weighted sampling, and the application to protein NMR Publication year: 2012 Source:Journal of Magnetic Resonance</br> Christopher A. Waudby, John Christodoulou</br> Non-uniform weighted sampling (NUWS) is a sampling strategy, related to non-uniform sampling (NUS) in the limit of long acquisition times, in which each indirect increment of a multidimensional spectrum is sampled multiple times according to some weighting function. As the spectrum is fully sampled it can be processed in a conventional...
nmrlearner Journal club 0 05-01-2012 08:03 PM
Knowledge-based nonuniform sampling in multidimensional NMR
Knowledge-based nonuniform sampling in multidimensional NMR Abstract The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent...
nmrlearner Journal club 0 06-06-2011 12:53 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:03 AM.


Map