BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 10:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,198
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Unfolded proteins and protein folding studied by NMR.

Unfolded proteins and protein folding studied by NMR.

Related Articles Unfolded proteins and protein folding studied by NMR.

Chem Rev. 2004 Aug;104(8):3607-22

Authors: Dyson HJ, Wright PE



PMID: 15303830 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins.
Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. Covalent structural changes in unfolded GroES that lead to amyloid fibril formation detected by NMR: Insight into intrinsically disordered proteins. J Biol Chem. 2011 Apr 20; Authors: Iwasa H, Meshitsuka S, Hongo K, Mizobata T, Kawata Y Co-chaperonin GroES from E. coli works with chaperonin GroEL to mediate the folding reactions of various proteins. However, under specific conditions, i. e., the...
nmrlearner Journal club 0 04-22-2011 02:00 PM
Comprehensive determination of 3JHNHα for unfolded proteins using 13C�-resolved spin-echo difference spectroscopy
Comprehensive determination of 3JHNHα for unfolded proteins using 13C�-resolved spin-echo difference spectroscopy Abstract An experiment is presented to determine 3JHNHα coupling constants, with significant advantages for applications to unfolded proteins. The determination of coupling constants for the peptide chain using 1D 1H, or 2D and 3D 1H-15N correlation spectroscopy is often hampered by extensive resonance overlap when dealing with flexible, disordered proteins. In the experiment detailed here, the overlap problem is largely circumvented by recording 1H-13C� correlation...
nmrlearner Journal club 0 01-09-2011 12:46 PM
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins
Pseudo-4D triple resonance experiments to resolve HN overlap in the backbone assignment of unfolded proteins Abstract The solution NMR resonance assignment of the protein backbone is most commonly carried out using triple resonance experiments that involve 15N and 1HN resonances. The assignment becomes problematic when there is resonance overlap of 15Nâ??1HN cross peaks. For such residues, one cannot unambiguously link the â??leftâ?? side of the NH root to the â??rightâ?? side, and the residues associated with such overlapping HN resonances remain often unassigned. Here we present a...
nmrlearner Journal club 0 12-31-2010 08:38 PM
[NMR paper] Millisecond protein folding studied by NMR spectroscopy.
Millisecond protein folding studied by NMR spectroscopy. Related Articles Millisecond protein folding studied by NMR spectroscopy. Protein Pept Lett. 2005 Feb;12(2):139-46 Authors: Zeeb M, Balbach J Proteins are involved in virtually every biological process and in order to function, it is necessary for these polypeptide chains to fold into the unique, native conformation. This folding process can take place rapidly. NMR line shape analyses and transverse relaxation measurements allow protein folding studies on a microsecond-to-millisecond...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Dynamics in the unfolded state of beta2-microglobulin studied by NMR.
Dynamics in the unfolded state of beta2-microglobulin studied by NMR. Related Articles Dynamics in the unfolded state of beta2-microglobulin studied by NMR. J Mol Biol. 2005 Feb 11;346(1):279-94 Authors: Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE Many proteins form amyloid-like fibrils in vitro under conditions that favour the population of partially folded conformations or denatured state ensembles. Characterising the structural and dynamic properties of these states is crucial towards understanding the mechanisms of...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Protein folding studied by real-time NMR spectroscopy.
Protein folding studied by real-time NMR spectroscopy. Related Articles Protein folding studied by real-time NMR spectroscopy. Methods. 2004 Sep;34(1):65-74 Authors: Zeeb M, Balbach J Real-time NMR spectroscopy developed to a generally applicable method to follow protein folding reactions. It combines the access to high resolution data with kinetic experiments allowing very detailed insights into the development of the protein structure during different steps of folding. The present review concentrates mainly on the progress of real-time NMR...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR.
Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--arjournals.annualreviews.org-images-AnnualReviews100x25.gif Related Articles Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243-65 Authors: Englander SW, Mayne L HX-labeling experiments in the pH-pulse mode show that protein folding can be remarkably fast. A near-native form can be reached within milliseconds. Experimental analysis of...
nmrlearner Journal club 0 08-21-2010 11:41 PM
Theoretical framework for NMR residual dipolar couplings in unfolded proteins
Theoretical framework for NMR residual dipolar couplings in unfolded proteins O. I. Obolensky, Kai Schlepckow, Harald Schwalbe and A. V. Solov’yov Journal of Biomolecular NMR; 2007; 39(1) pp 1-16 Abstract: A theoretical framework for the prediction of nuclear magnetic resonance (NMR) residual dipolar couplings (RDCs) in unfolded proteins under weakly aligning conditions is presented. The unfolded polypeptide chain is modeled as a random flight chain while the alignment medium is represented by a set of regularly arranged obstacles. For the case of bicelles oriented perpendicular to...
stewart Journal club 0 08-05-2008 02:26 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:51 AM.


Map