BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-11-2023, 01:13 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,210
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R2 and visible peak-position constraints

Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R2 and visible peak-position constraints

Abstract

Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a â??visibleâ?? major state and sparsely populated â??invisibleâ?? minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400Â*sâ??1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350Â*Hz) â??saturatingâ?? B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5Â*s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ( \({p}_{minor}\) ) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the \({\chi }_{red}^{2}\) versus \({p}_{minor}\) and \({\chi }_{red}^{2}\) versus exchange rate ( \({k}_{ex}\) ) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of â??spuriousâ?? minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 toâ??~350Â*Hz) results in convincing minima in the \({\chi }_{red}^{2}\) versus \({p}_{minor}\) and the \({\chi }_{red}^{2}\) versus \({k}_{ex}\) plots even when exchange occurs on the 100Â*μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constantâ??~104Â*sâ??1. Here the analysis of 15N CEST data alone results in \({\chi }_{red}^{2}\) versus \({p}_{minor}\) and \({\chi }_{red}^{2}\) versus \({k}_{ex}\) plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the \({\chi }_{red}^{2}\) versus \({p}_{minor}\) and \({\chi }_{red}^{2}\) versus \({k}_{ex}\) plots and precise exchange parameters even in the fast exchange regime ( \({k}_{ex}/|\mathrm{\Delta \omega }|\) ~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500Â*sâ??1) from 33.2 to 42.9Â*°C while the unfolding rates (~70 toâ??~500Â*sâ??1) and unfolded state populations (~0.7 toâ??~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104Â*sâ??1 timescale can be studied using amide 15N CEST experiments.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] ARCHE-NOAH: NMR supersequence with five different CEST experiments for studying protein conformational dynamics
ARCHE-NOAH: NMR supersequence with five different CEST experiments for studying protein conformational dynamics An NMR NOAH-supersequence is presented consisting of five CEST experiments for studying protein backbone and side-chain dynamics by ^(15)N-CEST, carbonyl-^(13)CO-CEST, aromatic-^(13)C(ar)-CEST, ^(13)C(?)-CEST, and methyl-^(13)C(met)-CEST. The new sequence acquires the data for these experiments in a fraction of the time required for the individual experiments, saving over four days of NMR time per sample. More...
nmrlearner Journal club 0 06-08-2023 09:28 PM
Exchangeable deuterons introduce artifacts in amide 15 N CEST experiments used to study protein conformational exchange
Exchangeable deuterons introduce artifacts in amide 15 N CEST experiments used to study protein conformational exchange Abstract Protein molecules sample different conformations in solution and characterizing these conformations is crucial to understanding protein function. 15N CEST experiments are now routinely used to study slow conformational exchange of protein molecules between a â??visibleâ?? major state and â??invisibleâ?? minor states. These experiments have also been adapted to measure the solvent exchange rates of amide protons by exploiting...
nmrlearner Journal club 0 03-24-2019 10:41 PM
[NMR paper] Residue selective 15N CEST and CPMG experiments for studies of millisecond timescale protein dynamics
Residue selective 15N CEST and CPMG experiments for studies of millisecond timescale protein dynamics Publication date: August 2018 Source: Journal of Magnetic Resonance, Volume 293 Author(s): Xiaogang Niu, Jienv Ding, Wenbo Zhang, Qianwen Li, Yunfei Hu, Changwen Jin Abstract
nmrlearner Journal club 0 07-06-2018 09:40 AM
[NMR paper] Residue Selective 15N CEST and CPMG Experiments for Studies of Millisecond Timescale Protein Dynamics
Residue Selective 15N CEST and CPMG Experiments for Studies of Millisecond Timescale Protein Dynamics Publication date: Available online 1 June 2018 Source:Journal of Magnetic Resonance</br> Author(s): Xiaogang Niu, Jienv Ding, Wenbo Zhang, Qianwen Li, Yunfei Hu, Changwen Jin</br> Proteins are intrinsically dynamic molecules and undergo exchanges among multiple conformations to perform biological functions. The CPMG relaxation dispersion and CEST experiments are two important solution NMR techniques for characterizing the conformational exchange processes...
nmrlearner Journal club 0 06-03-2018 01:00 AM
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins
Longitudinal relaxation optimized amide 1 H-CEST experiments for studying slow chemical exchange processes in fully protonated proteins Abstract Chemical Exchange Saturation Transfer (CEST) experiments are increasingly used to study slow timescale exchange processes in biomolecules. Although 15N- and 13C-CEST have been the approaches of choice, the development of spin state selective 1H-CEST pulse sequences that separate the effects of chemical and dipolar exchange significantly increases the utility of 1H-based experiments. Pulse schemes have been...
nmrlearner Journal club 0 03-30-2017 06:42 PM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 11-12-2012 01:53 AM
[NMR paper] Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation.
From Mendeley Biomolecular NMR group: Studying "Invisible" Excited Protein States in Slow Exchange with a Major State Conformation. Journal of the American Chemical Society (2012). Pramodh Vallurupalli, Guillaume Bouvignies, Lewis E Kay et al. Ever since its initial development, solution NMR spectroscopy has been used as a tool to study conformational exchange. Although many systems are amenable to relaxation dispersion approaches, cases involving highly skewed populations in slow chemical exchange have, in general, remained recalcitrant to study. Here an experiment to detect and...
nmrlearner Journal club 0 10-12-2012 09:58 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:51 PM.


Map