BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-13-2015, 02:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 19,922
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition†Electronic supplementary information (ESI) available: Full experimental details, (1)H/(13)C NMR spectral data, protein synthesis and purification. See DOI: 10.1039/c3sc53332h.

Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition†Electronic supplementary information (ESI) available: Full experimental details, (1)H/(13)C NMR spectral data, protein synthesis and purification. See DOI: 10.1039/c3sc53332h.

Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition†Electronic supplementary information (ESI) available: Full experimental details, (1)H/(13)C NMR spectral data, protein synthesis and purification. See DOI: 10.1039/c3sc53332h.

Chem Sci. 2014 Apr 1;5(5):1742-1744

Authors: Wallace S, Chin JW

Abstract
The discovery and exploration of bioorthogonal chemical reactions and the biosynthetic incorporation of their components into biomolecules for specific labelling is an important challenge. Here we describe the reaction of a phenyl sydnone 1,3-dipole with a bicyclononyne dipolarophile. This strain-promoted reaction proceeds without transition metal catalysis in aqueous buffer, at physiological temperature, and pressure with a rate comparable to that of other bioorthogonal reactions. We demonstrate the quantitative and specific labelling of a genetically encoded bicyclononyne with a sydnone fluorophore conjugate, demonstrating the utility of this approach for bioorthogonal protein labelling.


PMID: 25580211 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR images] Experimental data for the protein-protein docking approach
http://vred.bioinf.uni-sb.de/DFG-protein-protein-docking/abschlussbericht_2004/ypt51_gyp1_nmr.jpg vred.bioinf.uni-sb.de 12/11/2013 3:33:55 AM GMT Experimental data for the protein-protein docking approach More...
nmrlearner NMR pictures 0 12-08-2013 03:03 PM
Expression, Purification, and Solid-State NMR Characterization of the Membrane Binding Heme Protein Nitrophorin 7 in Two Electronic Spin States
Expression, Purification, and Solid-State NMR Characterization of the Membrane Binding Heme Protein Nitrophorin 7 in Two Electronic Spin States http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi401020t/aop/images/medium/bi-2013-01020t_0007.gif Biochemistry DOI: 10.1021/bi401020t http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/uUtP3lgkxCg More...
nmrlearner Journal club 0 09-27-2013 03:28 AM
[NMR paper] Expression, Purification and Solid-state NMR Characterization of the Membrane Binding Heme Protein Nitrophorin 7 in two Electronic Spin States.
Expression, Purification and Solid-state NMR Characterization of the Membrane Binding Heme Protein Nitrophorin 7 in two Electronic Spin States. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Expression, Purification and Solid-state NMR Characterization of the Membrane Binding Heme Protein Nitrophorin 7 in two Electronic Spin States. Biochemistry. 2013 Sep 13; Authors: Varghese S, Yang F, Pacheco V, Wrede K, Medvedev A, Ogata H, Knipp M, Heise H Abstract The...
nmrlearner Journal club 0 09-17-2013 11:36 PM
Monitoring Mechanistic Details in the Synthesis of Pyrimidines via Real-Time, Ultrafast Multidimensional NMR Spectroscopy
Monitoring Mechanistic Details in the Synthesis of Pyrimidines via Real-Time, Ultrafast Multidimensional NMR Spectroscopy Zulay D. Pardo, Gregory L. Olsen, Mari?a Encarnacio?n Ferna?ndez-Valle, Lucio Frydman, Roberto Marti?nez-A?lvarez and Antonio Herrera http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja210154g/aop/images/medium/ja-2011-10154g_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja210154g http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/tEFGGh16-DU
nmrlearner Journal club 0 01-28-2012 05:27 AM
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular assemblies and membrane proteins often diffract weakly and such large systems encroach upon the molecular tumbling limit of solution NMR, new methods are essential to extend structures of such systems to high resolution. Here we present a method that incorporates solid-state NMR restraints alongside...
nmrlearner Journal club 0 09-26-2011 06:42 AM
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data.
High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR. 2011 Sep 22; Authors: Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM Abstract X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) are the staple methods for revealing atomic structures of proteins. Since crystals of biomolecular...
nmrlearner Journal club 0 09-23-2011 05:30 PM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data.
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data. Related Articles CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data. BMC Struct Biol. 2010 Oct 29;10(1):39 Authors: Angyan AF, Szappanos B, Perczel A, Gaspari Z ABSTRACT: BACKGROUND: In conjunction with the recognition of the functional role of internal dynamics of proteins at various timescales, there is an emerging use of dynamic structural ensembles instead of individual conformers. These ensembles are usually substantially...
nmrlearner Journal club 0 11-03-2010 10:44 AM
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data -
CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data - 7thSpace Interactive (press release) <img alt="" height="1" width="1" /> CoNSEnsX: an ensemble view of protein structures and NMR-derived experimental data 7thSpace Interactive (press release) These ensembles are usually substantially more diverse than conventional NMR ensembles and eliminate the expectation that a single conformer should fulfill ... Read here
nmrlearner Online News 0 10-29-2010 09:32 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:13 PM.


Map