BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-08-2014, 05:26 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy.

Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy.

Related Articles Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy.

Anal Chem. 2014 May 5;

Authors: Gowda GA, Raftery D

Abstract
Quantitative NMR-based metabolite profiling is challenged by the deleterious effects of abundant proteins in the intact blood plasma/serum, which underscores the need for alternative approaches. Protein removal by ultrafiltration using low molecular weight cut-off filters thus represents an important step. However, protein precipitation, an alternative and simple approach for protein removal, lacks detailed quantitative assessment for use in NMR based metabolomics. In this study, we have comprehensively evaluated the performance of protein precipitation using methanol, acetonitrile, perchloric acid and trichloroacetic acid, and ultrafiltration approaches using 1D and 2D NMR, based on the identification and absolute quantitation of 44 human blood metabolites, including a few identified for the first time in the NMR spectra of human serum. We also investigated the use of a "smart isotope tag," 15N-cholamine for further resolution enhancement, which resulted in the detection of a number of additional metabolites. 1H NMR of both protein precipitated and ultrafiltered serum detected all 44 metabolites with comparable reproducibility (average CV: 3.7% for precipitation; 3.6% for filtration). However, nearly half of the quantified metabolites in ultrafiltered serum exhibited 10-74% lower concentrations; specifically, tryptophan, benzoate and 2-oxoisocaproate showed much lower concentrations compared to protein precipitated serum. These results indicate that protein precipitation using methanol offers a reliable approach for routine NMR-based metabolomics of human blood serum/plasma, and should be considered as an alternative to ultrafiltration. Importantly, protein precipitation, which is commonly used by mass spectrometry (MS), promises avenues for direct comparison and correlation of metabolite data obtained from the two analytical platforms to exploit their combined strength in the metabolomics of blood.


PMID: 24796490 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Systemic and characteristic metabolites in the serum of streptozotocin-induced diabetic rats at different stages as revealed by a (1)H-NMR based metabonomic approach.
Systemic and characteristic metabolites in the serum of streptozotocin-induced diabetic rats at different stages as revealed by a (1)H-NMR based metabonomic approach. Systemic and characteristic metabolites in the serum of streptozotocin-induced diabetic rats at different stages as revealed by a (1)H-NMR based metabonomic approach. Mol Biosyst. 2014 Jan 21; Authors: Diao C, Zhao L, Guan M, Zheng Y, Chen M, Yang Y, Lin L, Chen W, Gao H Abstract Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal...
nmrlearner Journal club 0 01-23-2014 03:58 PM
[NMR paper] Metabonomic profiling of serum and urine by (1)H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals.
Metabonomic profiling of serum and urine by (1)H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Metabonomic profiling of serum and urine by (1)H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy...
nmrlearner Journal club 0 01-15-2014 05:16 PM
[NMR paper] NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin.
NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin. Related Articles NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin. J Magn Reson. 2013 Dec 12;239C:34-43 Authors: Jupin M, Michiels PJ, Girard FC, Spraul M, Wijmenga SS Abstract Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients...
nmrlearner Journal club 0 01-01-2014 03:05 PM
[NMR paper] NMR Metabolomics Profiling of Blood Plasma Mimics shows that Medium- and Long-chain Fatty Acids Differently Release Metabolites from Human Serum Albumin
NMR Metabolomics Profiling of Blood Plasma Mimics shows that Medium- and Long-chain Fatty Acids Differently Release Metabolites from Human Serum Albumin Publication date: Available online 12 December 2013 Source:Journal of Magnetic Resonance</br> Author(s): M.D. Jupin , P.J. Michiels , F.C. Girard , M. Spraul , S.S. Wijmenga</br> Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma...
nmrlearner Journal club 0 12-12-2013 11:39 PM
[NMR paper] Longitudinal Relaxation Enhancement in (1) H NMR Spectroscopy of Tissue Metabolites via Spectrally Selective Excitation.
Longitudinal Relaxation Enhancement in (1) H NMR Spectroscopy of Tissue Metabolites via Spectrally Selective Excitation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Longitudinal Relaxation Enhancement in (1) H NMR Spectroscopy of Tissue Metabolites via Spectrally Selective Excitation. Chemistry. 2013 Sep 3; Authors: Shemesh N, Dumez JN, Frydman L Abstract Nuclear magnetic resonance spectroscopy is governed by...
nmrlearner Journal club 0 09-17-2013 11:36 PM
[NMR paper] NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction.
NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction. J Magn Reson. 2013 Jan 8;228C:81-94 Authors: Jupin M, Michiels PJ, Girard FC, Spraul M,...
nmrlearner Journal club 0 02-03-2013 10:19 AM
NMR Identification of Endogenous Metabolites interacting with Fatted and Non-Fatted Human Serum Albumin in Blood Plasma: Fatty Acids influence the HSA-Metabolite Interaction
NMR Identification of Endogenous Metabolites interacting with Fatted and Non-Fatted Human Serum Albumin in Blood Plasma: Fatty Acids influence the HSA-Metabolite Interaction Available online 8 January 2013 Publication year: 2013 Source:Journal of Magnetic Resonance</br> </br> Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum...
nmrlearner Journal club 0 01-09-2013 10:01 AM
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy.
A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy. A new method for the determination of free L: -carnitine in serum samples based on high field single quantum coherence filtering (1)H-NMR spectroscopy. Anal Bioanal Chem. 2011 Jan 11; Authors: Tsiafoulis CG, Exarchou V, Tziova PP, Bairaktari E, Gerothanassis IP, Troganis AN The rapid and accurate determination of specific metabolites present in biofluids is a very demanding task which is essential...
nmrlearner Journal club 0 01-12-2011 11:11 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:25 AM.


Map