BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 21,757
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Phosphorylated amino acids: model compounds for solid-state 31P NMR spectroscopic stu

Phosphorylated amino acids: model compounds for solid-state 31P NMR spectroscopic studies of proteins.

Related Articles Phosphorylated amino acids: model compounds for solid-state 31P NMR spectroscopic studies of proteins.

Magn Reson Chem. 2004 Apr;42(4):369-72

Authors: Iuga A, Brunner E

Solid-state 31P NMR spectroscopy was applied to measure the isotropic chemical shifts, chemical shift anisotropies and asymmetry parameters of three phosphorylated amino acids, O-phospho-L-serine, O-phospho-L-threonine and O-phospho-L-tyrosine. The cross-polarization buildup rates and longitudinal relaxation times of 31P and 1H were-determined and compared with the values measured for a triphosphate (GppCH2p) bound to a crystalline protein (Ras). It is shown that the phosphorylated amino acids are well-suited model compounds, e.g. for the optimization of experiments on crystalline proteins. Two-dimensional exchange experiments on O-phospho-L-tyrosine indicate the existence of an exchange between the two different conformations of the molecule.

PMID: 15022197 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy Abstract Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR...
nmrlearner Journal club 0 12-22-2011 06:50 AM
[Question from NMRWiki Q&A forum] 13C quaternary centers in amino acids
13C quaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxylic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heard the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 09-01-2011 07:20 AM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-31-2011 07:12 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 01-28-2011 04:52 AM
[NMR paper] An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations.
An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations. Related Articles An AMBER/DYANA/MOLMOL phosphorylated amino acid library set and incorporation into NMR structure calculations. J Biomol NMR. 2005 Sep;33(1):15-24 Authors: Craft JW, Legge GB Protein structure determination using Nuclear Magnetic Resonance (NMR) requires the use of molecular dynamics programs that incorporate both NMR experimental and implicit atomic data. Atomic parameters for each amino acid type are encoded in...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing ch
A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing cholesterol and polyunsaturated phosphatidylcholine. Related Articles A 2H solid-state NMR spectroscopic investigation of biomimetic bicelles containing cholesterol and polyunsaturated phosphatidylcholine. Chem Phys Lipids. 2004 Nov;132(1):55-64 Authors: Minto RE, Adhikari PR, Lorigan GA Deuterium solid-state NMR spectroscopy was used to qualitatively study the effects of both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLiPC) and cholesterol on...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] Solid-state NMR spectroscopic studies of an integral membrane protein inserted into a
Solid-state NMR spectroscopic studies of an integral membrane protein inserted into aligned phospholipid bilayer nanotube arrays. Related Articles Solid-state NMR spectroscopic studies of an integral membrane protein inserted into aligned phospholipid bilayer nanotube arrays. J Am Chem Soc. 2004 Aug 11;126(31):9504-5 Authors: Lorigan GA, Dave PC, Tiburu EK, Damodaran K, Abu-Baker S, Karp ES, Gibbons WJ, Minto RE This communication demonstrates for the first time that solid-state NMR spectroscopic studies can be used to investigate aligned...
nmrlearner Journal club 0 11-24-2010 10:01 PM
NMR-Spectroscopic and Solid-State Investigations of Cometal-Free Asymmetric Conjugate
NMR-Spectroscopic and Solid-State Investigations of Cometal-Free Asymmetric Conjugate Addition: A Dinuclear Paracyclophaneimine Zinc Methyl Complex S. Ay et al http://pubs.acs.org//appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1032502/aop/images/medium/ja-2010-032502_0003.gifJournal of the American Chemical Society, Volume 0, Issue 0, Articles ASAP (As Soon As Publishable). Source: Journal of the American Chemical Society
nmrlearner Journal club 0 09-01-2010 10:56 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:14 AM.


Map