BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-22-2010, 03:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 17,583
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants

NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline-117.

Related Articles NMR strategy for determining Xaa-Pro peptide bond configurations in proteins: mutants of staphylococcal nuclease with altered configuration at proline-117.

Biochemistry. 1993 Nov 9;32(44):11810-8

Authors: Hinck AP, Eberhardt ES, Markley JL

A general approach has been developed for configurational analysis (cis or trans) of Xaa-Pro peptide bonds in proteins. This approach, which entails selective 13C labeling of Xaa and Pro residues in the protein and isotope-edited NMR, has been applied to mutants of staphylococcal nuclease with suspected altered configurations of the Lys116-Pro117 peptide bond. The technique for monitoring proline configurations is based on differences in interproton distances between the H alpha of residue Xaa and the proline H delta or H alpha protons. Short (< 2.5 A) Xaa H alpha-Pro H delta interproton distances are diagnostic for the trans configuration, whereas short (< 2.5 A) Xaa H alpha-Pro H alpha interproton distances are diagnostic for the cis configuration. Biosynthetic incorporation of [alpha-13C]Xaa and [delta-13C]proline facilitates detection of trans Xaa-Pro peptide bonds, whereas incorporation of [alpha-13C]Xaa and [alpha-13C]proline facilitates detection of cis Xaa-Pro peptide bonds. Provided that the Xaa-Pro peptide bond is unique within the protein sequence, symmetric off-diagonal NOE cross peaks in the isotope-edited NOE spectrum allow for simultaneous chemical shift assignment and determination of the prolyl peptide bond geometry. We have used this technique to determine the predominant configuration of the Lys116-Pro117 peptide bond in recombinant V8 staphylococcal nuclease A (H124L) and two of its single amino acid mutants (D77A+H124L and G79S+H124L). The results are consistent with conclusions reached on the basis of indirect arguments concerning changes in the chemical shifts of histidine 1H epsilon 1 NMR signals.(ABSTRACT TRUNCATED AT 250 WORDS)

PMID: 8218252 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide.
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B. 2011 Jun 13; Authors: Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T We report an approach to determining membrane-peptides and -protein complex structures by...
nmrlearner Journal club 0 06-15-2011 01:15 PM
Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy
Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy Abstract An extension to HN(CO-α/β-N,Cα-J)-TROSY (Permi and Annila in J Biomol NMR 16:221??227, 2000) is proposed that permits the simultaneous determination of the four coupling constants 1 J N?(i)Cα(i), 2 J HN(i)Cα(i), 2 J Cα(i??1)N?(i), and 3 J Cα(i??1)HN(i) in 15N,13C-labeled proteins. Contrasting the original scheme, in which two separate subspectra exhibit the 2 J CαN? coupling as inphase and antiphase splitting (IPAP), we...
nmrlearner Journal club 0 06-10-2011 01:41 AM
[NMR paper] A strategy for the NMR characterization of type II copper(II) proteins: the case of t
A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. Related Articles A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. J Am Chem Soc. 2003 Jun 18;125(24):7200-8 Authors: Arnesano F, Banci L, Bertini I, Felli IC, Luchinat C, Thompsett AR CopC from Pseudomonas syringae was found to be a protein capable of binding both Cu(I) and Cu(II) at two different...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Differential isotype labeling strategy for determining the structure of myristoylated
Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. Related Articles Differential isotype labeling strategy for determining the structure of myristoylated recoverin by NMR spectroscopy. J Biomol NMR. 1998 Feb;11(2):135-52 Authors: Tanaka T, Ames JB, Kainosho M, Stryer L, Ikura M The three-dimensional solution structure of recombinant bovine myristoylated recoverin in the Ca(2+)-free state has been refined using an array of isotope-assisted multidimensional heteronuclear NMR...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Determining the structures of large proteins and protein complexes by NMR.
Determining the structures of large proteins and protein complexes by NMR. Related Articles Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 1998 Jan;16(1):22-34 Authors: Clore GM, Gronenborn AM Recent advances in multidimensional NMR methodology to obtain 1H, 15N and 13C resonance assignments, interproton-distance and torsion-angle restraints, and restraints that characterize long-range order have, coupled with new methods of structure refinement, permitted solution structure of proteins in excess...
nmrlearner Journal club 0 11-17-2010 11:06 PM
Strategy for complete NMR assignment of disordered proteins with highly repetitive se
Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments Abstract A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high...
nmrlearner Journal club 0 10-06-2010 02:16 AM
Strategy for complete NMR assignment of disordered proteins with highly repetitive se
Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR. 2010 Oct 2; Authors: Motá?ková V, Nová?ek J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Z*dek L, Sanderová H, Krásný L, Koźmi?ski W, Sklená? V A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly...
nmrlearner Journal club 0 10-05-2010 12:11 PM
Prediction of Xaa-Pro peptide bond conformation from sequence and chemical shifts
Abstract We present a program, named Promega, to predict the Xaa-Pro peptide bond conformation on the basis of backbone chemical shifts and the amino acid sequence. Using a chemical shift database of proteins of known structure together with the PDB-extracted amino acid preference of cis Xaa-Pro peptide bonds, a cis/trans probability score is calculated from the backbone and 13Cβ chemical shifts of the proline and its neighboring residues. For an arbitrary number of input chemical shifts, which may include Pro-13Cγ, Promega calculates the statistical probability that a Xaa-Pro peptide bond...
nmrlearner Journal club 0 08-14-2010 04:19 AM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:45 PM.


Map