BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-03-2013, 10:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,595
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR insights into protein allostery

NMR insights into protein allostery

15 March 2012
Publication year: 2012
Source:Archives of Biochemistry and Biophysics, Volume 519, Issue 2



Allosterism is one of nature’s principal methods for regulating protein function. Allosterism utilizes ligand binding at one site to regulate the function of the protein by modulating the structure and dynamics of a distant binding site. In this review, we first survey solution NMR techniques and how they may be applied to the study of allostery. Subsequently, we describe several examples of application of NMR to protein allostery and highlight the unique insight provided by this experimental technique.
Highlights

? Solution NMR provides unique structural and dynamical detail of allosteric proteins. ? Relaxation dispersion experiments provide evidence for lowly populated conformers. ? NMR can provide insight into kinetics and thermodynamics of allostery.





More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Protein function and allostery: a dynamic relationship.
From Mendeley Biomolecular NMR group: Protein function and allostery: a dynamic relationship. Annals of the New York Academy of Sciences (2012). Pages: 1-6. Charalampos G Kalodimos et al. Allostery is a fundamental process by which distant sites within a protein system sense each other. Allosteric regulation is such an efficient mechanism that it is used to control protein activity in most biological processes, including signal transduction, metabolism, catalysis, and gene regulation. Over recent years, our view and understanding of the fundamental principles underlying allostery...
nmrlearner Journal club 0 01-21-2013 02:09 PM
[NMR paper] Protein function and allostery: a dynamic relationship.
From Mendeley Biomolecular NMR group: Protein function and allostery: a dynamic relationship. Annals of the New York Academy of Sciences (2012). Pages: 1-6. Charalampos G Kalodimos et al. Allostery is a fundamental process by which distant sites within a protein system sense each other. Allosteric regulation is such an efficient mechanism that it is used to control protein activity in most biological processes, including signal transduction, metabolism, catalysis, and gene regulation. Over recent years, our view and understanding of the fundamental principles underlying allostery...
nmrlearner Journal club 0 10-12-2012 09:58 AM
[NMR paper] Protein function and allostery: a dynamic relationship.
From Mendeley Biomolecular NMR group: Protein function and allostery: a dynamic relationship. Annals of the New York Academy of Sciences (2012). Pages: 1-6. Charalampos G Kalodimos et al. Allostery is a fundamental process by which distant sites within a protein system sense each other. Allosteric regulation is such an efficient mechanism that it is used to control protein activity in most biological processes, including signal transduction, metabolism, catalysis, and gene regulation. Over recent years, our view and understanding of the fundamental principles underlying allostery...
nmrlearner Journal club 0 09-06-2012 01:42 AM
[NMR paper] Protein function and allostery: a dynamic relationship.
From Mendeley Biomolecular NMR group: Protein function and allostery: a dynamic relationship. Annals of the New York Academy of Sciences (2012). Pages: 1-6. Charalampos G Kalodimos et al. Allostery is a fundamental process by which distant sites within a protein system sense each other. Allosteric regulation is such an efficient mechanism that it is used to control protein activity in most biological processes, including signal transduction, metabolism, catalysis, and gene regulation. Over recent years, our view and understanding of the fundamental principles underlying allostery...
nmrlearner Journal club 0 08-24-2012 08:01 PM
Insights into protein folding may lead to better flu vaccine - R & D Magazine
Insights into protein folding may lead to better flu vaccine - R & D Magazine <img alt="" height="1" width="1" /> Insights into protein folding may lead to better flu vaccine R & D Magazine The method, described online in the Proceedings of the National Academy of Sciences July 16, allows researchers to take snapshots of the cell's protein-making machineryâ??called ribosomesâ??in various stages of protein production. The scientists then ... Read here
nmrlearner Online News 0 07-27-2012 11:58 AM
Protein dynamics and allostery: an NMR view.
Protein dynamics and allostery: an NMR view. Related Articles Protein dynamics and allostery: an NMR view. Curr Opin Struct Biol. 2010 Nov 23; Authors: Tzeng SR, Kalodimos CG Allostery, the process by which distant sites within a protein system are energetically coupled, is an efficient and ubiquitous mechanism for activity regulation. A purely mechanical view of allostery invoking only structural changes has developed over the decades as the classical view of the phenomenon. However, a fast growing list of examples illustrate the intimate link...
nmrlearner Journal club 0 11-27-2010 02:45 PM
[NMR paper] Insights into tyrosine phosphorylation control of protein-protein association from th
Insights into tyrosine phosphorylation control of protein-protein association from the NMR structure of a band 3 peptide inhibitor bound to glyceraldehyde-3-phosphate dehydrogenase. Related Articles Insights into tyrosine phosphorylation control of protein-protein association from the NMR structure of a band 3 peptide inhibitor bound to glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 1998 Jan 20;37(3):867-77 Authors: Eisenmesser EZ, Post CB A protein-protein association regulated by phosphorylation of tyrosine is examined by NMR...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Insights into protein folding from NMR.
Insights into protein folding from NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--arjournals.annualreviews.org-images-AnnualReviews100x25.gif Related Articles Insights into protein folding from NMR. Annu Rev Phys Chem. 1996;47:369-95 Authors: Dyson HJ, Wright PE NMR has emerged as an important tool for studies of protein folding because of the unique structural insights it can provide into many aspects of the folding process. Applications include measurements of kinetic folding events and structural characterization of folding...
nmrlearner Journal club 0 08-22-2010 02:27 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:52 AM.


Map