BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:01 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.

Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.

Related Articles Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.

Anal Chem. 2003 Feb 15;75(4):956-60

Authors: Kakuta M, Jayawickrama DA, Wolters AM, Manz A, Sweedler JV

Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.

PMID: 12622391 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements.
Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. Rapid identification of protein-protein interfaces for the construction of a complex model based on multiple unassigned signals by using time-sharing NMR measurements. J Struct Biol. 2011 Apr 9; Authors: Kodama Y, Reese ML, Shimba N, Ono K, Kanamori E, Dötsch V, Noguchi S, Fukunishi Y, Suzuki EI, Shimada I, Takahashi H Protein-protein interactions are necessary for various cellular...
nmrlearner Journal club 0 04-20-2011 07:15 PM
Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry
Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry Content Type Journal Article Pages 1-1 DOI 10.1007/s10858-011-9503-7 Authors
nmrlearner Journal club 0 04-14-2011 01:30 AM
NMR-based stable isotope resolved metabolomics in systems biochemistry
NMR-based stable isotope resolved metabolomics in systems biochemistry Abstract An important goal of metabolomics is to characterize the changes in metabolic networks in cells or various tissues of an organism in response to external perturbations or pathologies. The profiling of metabolites and their steady state concentrations does not directly provide information regarding the architecture and fluxes through metabolic networks. This requires tracer approaches. NMR is especially powerful as it can be used not only to identify and quantify metabolites in an unfractionated mixture such...
nmrlearner Journal club 0 03-03-2011 02:06 AM
[NMR paper] Effect of pH and copper(II) on the conformation transitions of silk fibroin based on
Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Related Articles Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. Biochemistry. 2004 Sep 28;43(38):11932-41 Authors: Zong XH, Zhou P, Shao ZZ, Chen SM, Chen X, Hu BW, Deng F, Yao WH Much attention has been paid to the natural mechanism of silkworm spinning due to the impressive mechanical properties of the natural fibers. Our results in the present work show...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Conformational changes in a photosensory LOV domain monitored by time-resolved NMR sp
Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. Related Articles Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy. J Am Chem Soc. 2004 Mar 24;126(11):3390-1 Authors: Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH Phototropins are light-activated kinases from plants that utilize light-oxygen-voltage (LOV) domains as blue light photosensors. Illumination of these domains leads to the formation of a covalent linkage between the protein and an...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Leveraging structural approaches: applications of NMR-based screening and X-ray cryst
Leveraging structural approaches: applications of NMR-based screening and X-ray crystallography for inhibitor design. Related Articles Leveraging structural approaches: applications of NMR-based screening and X-ray crystallography for inhibitor design. J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):97-100 Authors: Moore J, Abdul-Manan N, Fejzo J, Jacobs M, Lepre C, Peng J, Xie X In the last several years, NMR strategies in drug discovery have evolved from a primarily structural focus to a set of technologies that are non-structural in nature but...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shif
Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Related Articles Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Biochemistry. 1999 Jul 20;38(29):9242-53 Authors: Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y The interaction between the 26 kDa yeast ubiquitin hydrolase (YUH1), involved in maintaining the monomeric ubiquitin pool in cells, and the 8.5 kDa yeast ubiquitin protein has been studied by heteronuclear...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Protein structure refinement based on paramagnetic NMR shifts: applications to wild-t
Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c. Protein Sci. 1995 Feb;4(2):296-305 ...
nmrlearner Journal club 0 08-22-2010 03:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:22 AM.


Map