BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-29-2022, 02:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Measurement of 1Hα transverse relaxation rates in proteins: application to solvent PREs

Measurement of 1Hα transverse relaxation rates in proteins: application to solvent PREs

Abstract

It has recently been demonstrated that accurate near surface electrostatic potentials can be calculated for proteins from solvent paramagnetic relaxation enhancements (PREs) of amide protons measured using spin labels of similar structures but different charges (Yu et al. in Proc Natl Acad Sci 118(25):e2104020118, 2021). Here we develop methodology for extending such measurements to intrinsically disordered proteins at neutral pH where amide spectra are of very poor quality. Under these conditions it is shown that accurate PRE values can be measured using the haCONHA experiment that has been modified for recording 1Hα transverse relaxation rates. The optimal pulse scheme includes a spin-lock relaxation element for suppression of homonuclear scalar coupled evolution for all 1Hα protons, except those derived from Ser and Thr residues, and minimizes the radiation damping field from water magnetization that would otherwise increase measured relaxation rates. The robustness of the experiment is verified by developing a second approach using a band selective adiabatic decoupling scheme for suppression of scalar coupling modulations during 1Hα relaxation and showing that the measured PRE values from the two methods are in excellent agreement. The near surface electrostatic potential of a 103-residue construct comprising the C-terminal intrinsically disordered region of the RNA-binding protein CAPRIN1 is obtained at pH 5.5 using both 1HN and 1Hα-based relaxation rates, and at pH 7.4 where only 1Hα rates can be quantified, with very good agreement between potentials obtained under all experimental conditions.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] The Measurement of Relaxation Rates of Degenerate 1H Transitions in Methyl Groups of Proteins Using Acute Angle Radiofrequency Pulses
The Measurement of Relaxation Rates of Degenerate 1H Transitions in Methyl Groups of Proteins Using Acute Angle Radiofrequency Pulses Publication date: Available online 14 July 2021 Source: Journal of Magnetic Resonance Author(s): Vitali Tugarinov, G. Marius Clore
nmrlearner Journal club 0 07-14-2021 10:07 PM
Simultaneous measurement of 1 H C/N -R 2 â?²s for rapid acquisition of backbone and sidechain paramagnetic relaxation enhancements (PREs) in proteins
Simultaneous measurement of 1 H C/N -R 2 â?²s for rapid acquisition of backbone and sidechain paramagnetic relaxation enhancements (PREs) in proteins Abstract Paramagnetic relaxation enhancements (PREs) are routinely used to provide long-range distance restraints for the determination of protein structures, to resolve protein dynamics, ligandâ??protein binding sites, and lowly populated species, using Nuclear Magnetic Resonance Spectroscopy (NMR). Here, we propose a simultaneous 1H-15Â*N, 1H-13C SESAME based pulse scheme for the rapid acquisition of...
nmrlearner Journal club 0 02-26-2021 02:02 PM
[NMR paper] Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR.
Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. Related Articles Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. J Phys Chem B. 2020 Nov 12;: Authors: Leeb S, Yang F, Oliveberg M, Danielsson J Abstract In the cytosolic environment, protein crowding and Brownian motions result in numerous transient encounters. Each such encounter event increases the apparent size of the interacting molecules, leading to slower rotational tumbling. The extent of transient protein complexes formed...
nmrlearner Journal club 0 11-13-2020 04:07 PM
15 N transverse relaxation measurements for the characterization of µsâ??ms dynamics are deteriorated by the deuterium isotope effect on 15 N resulting from solvent exchange
15 N transverse relaxation measurements for the characterization of µsâ??ms dynamics are deteriorated by the deuterium isotope effect on 15 N resulting from solvent exchange Abstract 15N R2 relaxation measurements are key for the elucidation of the dynamics of both folded and intrinsically disordered proteins (IDPs). Here we show, on the example of the intrinsically disordered protein α-synuclein and the folded domain PDZ2, that at physiological pH and near physiological temperatures amideâ??water exchange can severely skew Hahn-echo based 15N R2...
nmrlearner Journal club 0 11-25-2018 06:02 AM
[NMR paper] Heteronuclear Transverse and Longitudinal Relaxation in AX4 Spin Systems: Application to 15N Relaxations in 15NH4+
Heteronuclear Transverse and Longitudinal Relaxation in AX4 Spin Systems: Application to 15N Relaxations in 15NH4+ Publication date: Available online 28 June 2014 Source:Journal of Magnetic Resonance</br> Author(s): Nicolas D. Werbeck , D. Flemming Hansen</br> The equations that describe the time-evolution of transverse and longitudinal 15N magnetisations in tetrahedral ammonium ions, 15NH4 +, are derived from the Bloch-Wangsness-Redfield density operator relaxation theory. It is assumed that the relaxation of the spin-states is dominated by (1) the intra-molecular...
nmrlearner Journal club 0 06-29-2014 02:00 AM
Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods
Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods <div class="Abstract" lang="en">Abstract <div class="normal">While extracting dynamics parameters from backbone 15N relaxation measurements in proteins has become routine over the past two decades, it is increasingly recognized that accurate quantitative analysis can remain limited by the potential presence of systematic errors associated with the measurement of 15N R1 and R2 or R1Ï? relaxation rates as well as heteronuclear 15N-{1H} NOE values. We show that systematic errors in such measurements can...
nmrlearner Journal club 0 06-16-2012 06:01 AM
Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes
Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes Abstract Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R2, is needed for accurate characterization of dynamics, the uncertainty in the R2 value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase...
nmrlearner Journal club 0 04-03-2012 07:56 AM
15NH/D-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: a
Abstract Amide solvent exchange rates are regarded as a valuable source of information on structure/dynamics of unfolded (disordered) proteins. Proton-based saturation transfer experiments, normally used to measure solvent exchange, are known to meet some serious difficulties. The problems mainly arise from the need to (1) manipulate water magnetization and (2) discriminate between multiple magnetization transfer pathways that occur within the proton pool. Some of these issues are specific to unfolded proteins. For example, the compensation scheme used to cancel the Overhauser effect in the...
nmrlearner Journal club 0 08-14-2010 04:19 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:12 AM.


Map