BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-08-2011, 06:50 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Mapping the Landscape of RNA Dynamics with NMR Spectroscopy.

Mapping the Landscape of RNA Dynamics with NMR Spectroscopy.

Mapping the Landscape of RNA Dynamics with NMR Spectroscopy.

Acc Chem Res. 2011 Sep 6;

Authors: Rinnenthal J, Buck J, Ferner J, Wacker A, Fu?rtig B, Schwalbe H

Abstract
Among the three major classes of biomacromolecules (DNA, RNA, and proteins) RNA's pronounced dynamics are the most explicitly linked to its wide variety of functions, which include catalysis and the regulation of transcription, translation, and splicing. These functions are mediated by a range of RNA biomachinery, including such varied examples as macromolecular noncoding RNAs, microRNAs, small interfering RNAs, riboswitch RNAs, and RNA thermometers. In each case, the functional dynamics of an interconversion is characterized by an associated rate constant. In this Account, we provide an introduction to NMR spectroscopic characterization of the landscape of RNA dynamics. We introduce strategies for measuring NMR parameters at various time scales as well as the underlying models for describing the corresponding rate constants. RNA exhibits significant dynamic motion, which can be modulated by (i) intermolecular interactions, including specific and nonspecific binding of ions (such as Mg(2+) and tertiary amines), (ii) metabolites in riboswitches or RNA aptamers, and (iii) macromolecular interactions within ribonucleic protein particles, including the ribosome and the spliceosome. Our understanding of the nature of these dynamic changes in RNA targets is now being incorporated into RNA-specific approaches in the design of RNA inhibitors. Interactions of RNA with proteins, other RNAs, or small molecules often occur through binding mechanisms that follow an induced fit mechanism or a conformational selection mechanism, in which one of several populated RNA conformations is selected through ligand binding. The extent of functional dynamics, including the kinetic formation of a specific RNA tertiary fold, is dependent on the messenger RNA (mRNA) chain length. Thus, during de novo synthesis of mRNA, both in prokaryotes and eukaryotes, nascent mRNA of various lengths will adopt different secondary and tertiary structures. The speed of transcription has a critical influence on the functional dynamics of the RNA being synthesized. In addition to modulating the local dynamics of a conformational RNA ensemble, a given RNA sequence may adopt more than one global, three-dimensional structure. RNA modification is one way to select among these alternative structures, which are often characterized by nearly equal stability, but with high energy barriers for conformational interconversion. The refolding of different secondary and tertiary structures has been found to be a major regulatory mechanism for transcription and translation. These conformational transitions can be characterized with NMR spectroscopy, for any given RNA sequence, in response to external stimuli.


PMID: 21894962 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR spectroscopy to study the dynamics and interactions of CFTR.
NMR spectroscopy to study the dynamics and interactions of CFTR. NMR spectroscopy to study the dynamics and interactions of CFTR. Methods Mol Biol. 2011;741:377-403 Authors: Kanelis V, Chong PA, Forman-Kay JD Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) is a multi-domain membrane chloride channel whose activity is regulated by ATP at two nucleotide-binding domains (NBD1 and NBD2) and by phosphorylation of the regulatory (R) region. The NBDs and the R region have functionally relevant motions that are critical...
nmrlearner Journal club 0 09-02-2011 05:40 PM
[NMR paper] Elucidation of the protein folding landscape by NMR.
Elucidation of the protein folding landscape by NMR. Related Articles Elucidation of the protein folding landscape by NMR. Methods Enzymol. 2005;394:299-321 Authors: Dyson HJ, Wright PE NMR is one of the few experimental methods that can provide detailed insights into the structure and dynamics of unfolded and partly folded states of proteins. Mapping the protein folding landscape is of central importance to understanding the mechanism of protein folding. In addition, it is now recognized that many proteins are intrinsically unstructured in...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Fast mapping of protein-protein interfaces by NMR spectroscopy.
Fast mapping of protein-protein interfaces by NMR spectroscopy. Related Articles Fast mapping of protein-protein interfaces by NMR spectroscopy. J Am Chem Soc. 2003 Nov 26;125(47):14250-1 Authors: Reese ML, Dötsch V Identifying the interface of protein complexes can represent a difficult task in structural biology. Here, we report a method for the fast mapping of interfaces of protein complexes by NMR without the need for the assignments of the proteins involved.
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Probing the kinetic landscape of transient peptide-protein interactions by use of pep
Probing the kinetic landscape of transient peptide-protein interactions by use of peptide (15)n NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin. Related Articles Probing the kinetic landscape of transient peptide-protein interactions by use of peptide (15)n NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin. J Am Chem Soc. 2003 Oct 15;125(41):12432-42 Authors: Tolkatchev D, Xu P, Ni F Protein-ligand interactions may lead to the formation of multiple...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] The pressure-temperature free energy-landscape of staphylococcal nuclease monitored b
The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by (1)H NMR. Related Articles The pressure-temperature free energy-landscape of staphylococcal nuclease monitored by (1)H NMR. J Mol Biol. 2000 Apr 28;298(2):293-302 Authors: Lassalle MW, Yamada H, Akasaka K The thermodynamic stability of staphylococcal nuclease was studied against the variation of both temperature and pressure by utilizing (1)H NMR spectroscopy at 750 MHz in 20 mM Mes buffer containing 99.9 % (2)H(2)O, pH 5.3. Equilibrium fractions of folded...
nmrlearner Journal club 0 11-18-2010 09:15 PM
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy Abstract Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) spectroscopy has allowed to directly visualize such transient intermediates in a number of protein-protein and protein-DNA complexes. Here we present an analysis of the recently published PRE NMR data for a protein complex of yeast...
nmrlearner Journal club 0 11-06-2010 01:24 PM
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy.
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy. Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy. J Biomol NMR. 2010 Nov 4; Authors: Volkov AN, Ubbink M, van Nuland NA Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) spectroscopy has allowed to directly visualize such...
nmrlearner Journal club 0 11-05-2010 10:01 AM
Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR)
Mapping structural interactions using in-cell NMR spectroscopy (STINT-NMR) David S Burz, Kaushik Dutta, David Cowburn & Alexander Shekhtman We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define...
sivanmr Journal club 0 01-27-2006 11:26 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:32 AM.


Map