BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,813
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Isoform-specific differences between the type Ialpha and IIalpha cyclic AMP-dependent

Isoform-specific differences between the type Ialpha and IIalpha cyclic AMP-dependent protein kinase anchoring domains revealed by solution NMR.

Related Articles Isoform-specific differences between the type Ialpha and IIalpha cyclic AMP-dependent protein kinase anchoring domains revealed by solution NMR.

J Biol Chem. 2000 Nov 10;275(45):35146-52

Authors: Banky P, Newlon MG, Roy M, Garrod S, Taylor SS, Jennings PA

Cyclic AMP dependent protein kinase (PKA) is controlled, in part, by the subcellular localization of the enzyme (). Discovery of dual specificity anchoring proteins (d-AKAPs) indicates that not only is the type II, but also the type I, enzyme localized (). It appears that the type I enzyme is localized in a novel, dynamic fashion as opposed to the apparent static localization of the type II enzyme. Recently, the structure of the dimerization/docking (D/D) domain from the type II enzyme was solved (). This work revealed an X-type four-helix bundle motif with a hydrophobic patch that modulates AKAP interactions. To understand the dynamic versus static localization of PKA, multidimensional NMR techniques were used to investigate the structural features of the type I D/D domain. Our results indicate a conserved helix-turn-helix motif in the type I and type II D/D domains. However, important differences between the two domains are evident in the extreme NH(2) terminus: this region is extended in the type II domain, whereas it is helical in the type I protein. The NH(2)-terminal residues in RIIalpha contain determinants for anchoring, and the orientation and packing of this helical element in the RIalpha structure may have profound consequences in the recognition surface presented to the AKAPs.

PMID: 10899163 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor.
Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor. Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor. Protein Expr Purif. 2011 May 13; Authors: Bellot G, Pascal R, Mendre C, Urbach S, Mouillac B, Déméné H The vasopressin type 2 (V2R) receptor belongs to the class of G-protein coupled receptors. It is mainly expressed in the membrane of kidney tubules,...
nmrlearner Journal club 0 05-19-2011 04:20 AM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR. 2010 Dec 18; Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner Journal club 0 12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner Journal club 0 12-21-2010 02:14 AM
[NMR paper] Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha.
Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Related Articles Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: application to cGMP-dependent protein kinase Ialpha. Protein Sci. 2005 Sep;14(9):2421-8 Authors: Schnell JR, Zhou GP, Zweckstetter M, Rigby AC, Chou JJ Coiled-coil motifs play essential roles in protein assembly and molecular recognition, and are therefore the targets of many ongoing...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts. Related Articles Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts. Biochem Biophys Res Commun. 2005 Sep 16;335(1):256-63 Authors: Zhao Q, Song J, Jin Z, Danilova V, Hellekant G, Markley JL Brazzein is a small, intensely sweet protein. As a probe of the functional...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (3
Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy. Related Articles Phosphorylation and flexibility of cyclic-AMP-dependent protein kinase (PKA) using (31)P NMR spectroscopy. Biochemistry. 2002 May 14;41(19):5968-77 Authors: Seifert MH, Breitenlechner CB, Bossemeyer D, Huber R, Holak TA, Engh RA Cell signaling pathways rely on phosphotransfer reactions that are catalyzed by protein kinases. The protein kinases themselves are typically regulated by phosphorylation and concurrent structural...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conf
1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c. Eur J Biochem. 1993 Feb 1;211(3):555-62 Authors: Turner DL, Williams RJ The redox-state dependent changes in chemical shift, which have...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled ba
Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins. Related Articles Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: potential for NMR structure determination of large proteins. J Biomol NMR. 1999 May;14(1):79-83 Authors: Kelly MJ, Krieger C, Ball LJ, Yu Y, Richter G, Schmieder P, Bacher A, Oschkinat H NMR investigations of larger macromolecules (> 20...
nmrlearner Journal club 0 08-21-2010 04:03 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:43 AM.


Map