BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-05-2018, 01:04 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,617
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Interplay Between Membrane Curvature and Protein Conformational Equilibrium Investigated by Solid-State NMR.

Interplay Between Membrane Curvature and Protein Conformational Equilibrium Investigated by Solid-State NMR.

Interplay Between Membrane Curvature and Protein Conformational Equilibrium Investigated by Solid-State NMR.

J Struct Biol. 2018 Feb 28;:

Authors: Liao SY, Lee M, Hong M

Abstract
Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to membrane curvature. The influenza M2 proton channel has a drug-binding site in the transmembrane (TM) pore. Previous chemical shift data indicated that this pore-binding site is lost in an M2 construct that contains the TM domain and a curvature-inducing amphipathic helix. We have now obtained chemical shift perturbation, protein-drug proximity, and drug orientation data that indicate that the pore-binding site is restored when the full cytoplasmic domain is present. This finding indicates that the curvature-inducing amphipathic helix distorts the TM structure to interfere with drug binding, while the cytoplasmic tail attenuates this effect. In the second example, we review our studies of a parainfluenza virus fusion protein that merges the cell membrane and the virus envelope during virus entry. Chemical shifts of two hydrophobic domains of the protein indicate that both domains have membrane-dependent backbone conformations, with the ?-strand structure dominating in negative-curvature phosphatidylethanolamine (PE) membranes. 31P NMR spectra and 1H-31P correlation spectra indicate that the ?-strand-rich conformation induces saddle-splay curvature to PE membranes and dehydrates them, thus stabilizing the hemifusion state. These results highlight the indispensable role of solid-state NMR to simultaneously determine membrane protein structures and characterize the membrane curvature in which these protein structures exist.


PMID: 29501472 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Interplay Between Membrane Curvature and Protein Conformational Equilibrium Investigated by Solid-State NMR
Interplay Between Membrane Curvature and Protein Conformational Equilibrium Investigated by Solid-State NMR Publication date: Available online 1 March 2018 Source:Journal of Structural Biology</br> Author(s): Shu Y. Liao, Myungwoon Lee, Mei Hong</br> Many membrane proteins sense and induce membrane curvature for function, but structural information about how proteins modulate their structures to cause membrane curvature is sparse. We review our recent solid-state NMR studies of two virus membrane proteins whose conformational equilibrium is tightly coupled to...
nmrlearner Journal club 0 03-01-2018 09:20 PM
Structure and Mechanisms of Actions of Curvature-Inducing Viral Membrane Proteins from Solid-State NMR
Structure and Mechanisms of Actions of Curvature-Inducing Viral Membrane Proteins from Solid-State NMR Publication date: 16 February 2016 Source:Biophysical Journal, Volume 110, Issue 3, Supplement 1</br> Author(s): Mei Hong</br> </br></br> </br></br> More...
nmrlearner Journal club 0 02-17-2016 07:50 PM
[NMR paper] Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State NMR of Oriented Bicelles.
Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State NMR of Oriented Bicelles. Investigation of the Curvature Induction and Membrane Localization of the Influenza Virus M2 Protein Using Static and Off-Magic-Angle Spinning Solid-State NMR of Oriented Bicelles. Biochemistry. 2015 Mar 16; Authors: Wang T, Hong M Abstract A wide variety of membrane proteins induce membrane curvature for function, thus it is important to develop...
nmrlearner Journal club 0 03-17-2015 05:12 PM
[NMR paper] Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR.
Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR. Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR. Biophys J. 2015 Jan 6;108(1):5-9 Authors: Marek A, Tang W, Milikisiyants S, Nevzorov AA, Smirnov AI Abstract Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80*nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced...
nmrlearner Journal club 0 01-08-2015 01:29 PM
Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR
Nanotube Array Method for Studying Lipid-Induced Conformational Changes of a Membrane Protein by Solid-State NMR Publication date: 6 January 2015 Source:Biophysical Journal, Volume 108, Issue 1</br> Author(s): Antonin Marek , Wenxing Tang , Sergey Milikisiyants , Alexander*A. Nevzorov , Alex*I. Smirnov</br> Anodic aluminum oxide substrates with macroscopically aligned homogeneous nanopores of 80*nm in diameter enable two-dimensional, solid-state nuclear magnetic resonance studies of lipid-induced conformational changes of uniformly 15N-labeled Pf1 coat protein...
nmrlearner Journal club 0 01-07-2015 11:26 AM
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR Jonathan K. Williams, Daniel Tietze, Jun Wang, Yibing Wu, William F. DeGrado and Mei Hong http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja4041412/aop/images/medium/ja-2013-041412_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja4041412 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/SJt4vbTURaE
nmrlearner Journal club 0 06-22-2013 01:40 AM
[NMR paper] Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR.
Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR. Related Articles Drug-Induced Conformational and Dynamical Changes of the S31N Mutant of the Influenza M2 Proton Channel Investigated by Solid-State NMR. J Am Chem Soc. 2013 Jun 11; Authors: Williams JK, Tietze D, Wang J, Wu Y, Degrado WF, Hong M Abstract The M2 protein of influenza A viruses forms a tetrameric proton channel that is targeted by the amantadine class of antiviral drugs. A S31N mutation in...
nmrlearner Journal club 0 06-14-2013 07:31 PM
Conformational Disorder of Membrane Peptides Investigated from Solid-State NMR Linewidths and Lineshapes.
Conformational Disorder of Membrane Peptides Investigated from Solid-State NMR Linewidths and Lineshapes. Conformational Disorder of Membrane Peptides Investigated from Solid-State NMR Linewidths and Lineshapes. J Phys Chem B. 2011 Aug 1; Authors: Su Y, Hong M A challenge in the application of solid-state NMR spectroscopy to membrane proteins and peptides is the relatively broad linewidths compared to solution NMR spectra. To understand the linewidth contributions to membrane protein spectra, we have measured the inhomogeneous and homogeneous...
nmrlearner Journal club 0 08-03-2011 12:00 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:45 AM.


Map