BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 05-13-2017, 02:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,654
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Impact of spin label rigidity on extent and accuracy of distance information from PRE data

Impact of spin label rigidity on extent and accuracy of distance information from PRE data

Abstract

Paramagnetic relaxation enhancement (PRE) is a versatile tool for NMR spectroscopic structural and kinetic studies in biological macromolecules. Here, we compare the quality of PRE data derived from two spin labels with markedly different dynamic properties for large RNAs using the I-A riboswitch aptamer domain (78 nt) from Mesoplamsa florum as model system. We designed two I-A aptamer constructs that were spin-labeled by noncovalent hybridization of short spin-labeled oligomer fragments. As an example of a flexible spin label, UreidoU-TEMPO was incorporated into the 3â?² terminal end of helix P1 while, the recently developed rigid spin-label Ã?m was incorporated in the 5â?² terminal end of helix P1. We determined PRE rates obtained from aromatic 13C bound proton intensities and compared these rates to PREs derived from imino proton intensities in this sizeable RNA (~78 nt). PRE restraints derived from both imino and aromatic protons yielded similar data quality, and hence can both be reliably used for PRE determination. For NMR, the data quality derived from the rigid spin label Ã?m is slightly better than the data quality for the flexible UreidoTEMPO as judged by comparison of the structural agreement with the I-A aptamer crystal structure (3SKI).



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Nuclear spin-lattice relaxation in nitroxide spin-label EPR
From The DNP-NMR Blog: Nuclear spin-lattice relaxation in nitroxide spin-label EPR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Marsh, D., Nuclear spin-lattice relaxation in nitroxide spin-label EPR. J Magn Reson, 2016. 272: p. 166-171. https://www.ncbi.nlm.nih.gov/pubmed/27712989
nmrlearner News from NMR blogs 0 12-02-2016 07:56 PM
A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement #DNPNMR
From The DNP-NMR Blog: A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement #DNPNMR Yang, Z., et al., A triarylmethyl spin label for long-range distance measurement at physiological temperatures using T1 relaxation enhancement. J. Magn. Reson., 2016. 269: p. 50-54. http://dx.doi.org/10.1016/j.jmr.2016.05.006
nmrlearner News from NMR blogs 0 08-10-2016 06:25 PM
[NMR paper] A Triarylmethyl Spin Label for Long-Range Distance Measurement at Physiological Temperatures Using T1 Relaxation Enhancement
A Triarylmethyl Spin Label for Long-Range Distance Measurement at Physiological Temperatures Using T1 Relaxation Enhancement Publication date: Available online 10 May 2016 Source:Journal of Magnetic Resonance</br> Author(s): Zhongyu Yang, Michael D. Bridges, Carlos J. López, Olga Yu. Rogozhnikova, Dmitry V. Trukhin, Evan K. Brooks, Victor Tormyshev, Howard J. Halpern, Wayne L. Hubbell</br> Site-directed spin labeling (SDSL) in combination with Electron Paramagnetic Resonance (EPR) spectroscopy has become an important tool for measuring distances in...
nmrlearner Journal club 0 05-11-2016 08:04 PM
The Spatial Effect of Protein Deuteration on Nitroxide Spin-label Relaxation: Implications for EPR Distance Measurement
The Spatial Effect of Protein Deuteration on Nitroxide Spin-label Relaxation: Implications for EPR Distance Measurement Publication date: Available online 28 September 2014 Source:Journal of Magnetic Resonance</br> Author(s): Hassane. El Mkami , Richard Ward , Andrew Bowman , Tom Owen-Hughes , David G. Norman</br> Pulsed electron-electron double resonance (PELDOR) coupled with site-directed spin labeling is a powerful technique for the elucidation of protein or nucleic acid, macromolecular structure and interactions. The intrinsic high sensitivity of electron...
nmrlearner Journal club 0 09-28-2014 08:03 PM
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy
VITAL NMR: using chemical shift derived secondary structure information for a limited set of amino acids to assess homology model accuracy Abstract Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR...
nmrlearner Journal club 0 12-22-2011 06:50 AM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints. J Am Chem Soc. 2011 Apr 4; Authors: Ryabov Y, Schwieters CD, Clore GM (15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner Journal club 0 04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja201020c http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner Journal club 0 04-05-2011 10:37 AM
[NMR paper] Increased rigidity of eglin c at acidic pH: evidence from NMR spin relaxation and MD
Increased rigidity of eglin c at acidic pH: evidence from NMR spin relaxation and MD simulations. Related Articles Increased rigidity of eglin c at acidic pH: evidence from NMR spin relaxation and MD simulations. Biochemistry. 2003 Dec 2;42(47):13856-68 Authors: Hu H, Clarkson MW, Hermans J, Lee AL To gain physical insights into how proteins respond to changes in pH, the picosecond to nanosecond time scale dynamics of the small serine protease inhibitor eglin c have been studied by NMR spin relaxation experiments and MD simulations under two...
nmrlearner Journal club 0 11-24-2010 09:16 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:07 PM.


Map