BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-13-2020, 05:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Identification and quantification of oxidation products in full-length biotherapeutic antibodies by NMR spectroscopy.

Identification and quantification of oxidation products in full-length biotherapeutic antibodies by NMR spectroscopy.

Related Articles Identification and quantification of oxidation products in full-length biotherapeutic antibodies by NMR spectroscopy.

Anal Chem. 2020 Jun 12;:

Authors: Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M

Abstract
Therapeutic proteins are an indispensable class of drugs and often therapeutics of last resort. They are sensitive to oxidation, which is of critical concern, because it can affect drug safety and efficacy. Protein oxidation, with methionine and tryptophan as the most susceptible moieties, is mainly monitored by HPLC-MS techniques. However, since several oxidation products display the same mass difference, their identification by MS is often ambiguous. Therefore, an alternative analytical method able to unambiguously identify and, ideally, also quantify oxidation species in proteins is highly desired. Here we present an NMR-based approach to monitor oxidation in full-length proteins under denaturing conditions, as demonstrated on two biotherapeutic monoclonal antibodies (mAbs). We show that methionine sulfoxide, methionine sulfone, N-formylkynurenine, kynurenine, oxindolylalanine, hydroxypyrroloindole and 5-hydroxytryptophan result in characteristic chemical shift correlations suited for their identification and quantification. We identified the five most abundant oxidation products in forced degradation studies of two full-length therapeutic mAbs and can also unambiguously distinguish oxindolylalanine from 5-hydroxytryptophan, which are undistinguishable by MS due to the same mass shift. Quantification of the abundant methionine sulfoxide by NMR and MS gave highly comparable values. These results underline the suitability of NMR spectroscopy for the identification and quantification of critical quality attributes of biotherapeutics.


PMID: 32530275 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy #DNPNMR
From The DNP-NMR Blog: Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Yamamoto, K., et al., Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy. Sci Rep, 2017. 7(1): p. 4116....
nmrlearner News from NMR blogs 0 08-02-2017 02:19 PM
[NMR paper] Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy.
Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy. Related Articles Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy. Sci Rep. 2017 Jun 23;7(1):4116 Authors: Yamamoto K, Caporini MA, Im SC, Waskell L, Ramamoorthy A Abstract...
nmrlearner Journal club 0 06-25-2017 02:42 PM
[NMR paper] Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy.
Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy. Dynamic Interaction Between Membrane-Bound Full-Length Cytochrome P450 and Cytochrome b5 Observed by Solid-State NMR Spectroscopy. Sci Rep. 2013 Aug 29;3:2538 Authors: Yamamoto K, Dürr UH, Xu J, Im SC, Waskell L, Ramamoorthy A Abstract Microsomal monoxygenase enzymes of the cytochrome-P450 family are found in all biological kingdoms, and play a central role in the breakdown of metabolic as well as...
nmrlearner Journal club 0 08-30-2013 04:35 PM
[NMR paper] Full-length Vpu and human CD4(372-433) in phospholipid bilayers as seen by magic angle spinning NMR.
Full-length Vpu and human CD4(372-433) in phospholipid bilayers as seen by magic angle spinning NMR. Related Articles Full-length Vpu and human CD4(372-433) in phospholipid bilayers as seen by magic angle spinning NMR. Biol Chem. 2013 Jul 17; Authors: Do HQ, Wittlich M, Glück JM, Möckel L, Willbold D, Koenig BW, Heise H Abstract Abstract HIV-1 Vpu and CD4(372-433), a peptide comprising the transmembrane and cytoplasmic domain of human CD4, were recombinantly expressed in Escherichia coli, uniformly labeled with 13C und 15N isotopes,...
nmrlearner Journal club 0 07-19-2013 09:20 PM
[NMR paper] Mapping the binding site of full length HIV-1 Nef on human Lck SH3 by NMR spectroscop
Mapping the binding site of full length HIV-1 Nef on human Lck SH3 by NMR spectroscopy. Related Articles Mapping the binding site of full length HIV-1 Nef on human Lck SH3 by NMR spectroscopy. J Biomed Sci. 2005;12(3):451-6 Authors: Briese L, Preusser A, Willbold D The Nef protein of human immunodeficiency virus type 1 (HIV-1) is known to directly bind to the SH3 domain of human lymphocyte specific kinase (Lck) via a proline-rich region located in the amino terminal part of Nef. To address the question whether Nef binding to Lck SH3 involves...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Functional characterization and NMR spectroscopy on full-length Vpu from HIV-1 prepar
Functional characterization and NMR spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. Related Articles Functional characterization and NMR spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J Am Chem Soc. 2004 Mar 3;126(8):2439-46 Authors: Kochendoerfer GG, Jones DH, Lee S, Oblatt-Montal M, Opella SJ, Montal M Vpu is an 81-residue integral membrane protein encoded in the HIV-1 genome that is of considerable interest because it plays important roles in the release of virus particles...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] NMR assignment of the full-length ribosomal protein L11 from Thermotoga maritima.
NMR assignment of the full-length ribosomal protein L11 from Thermotoga maritima. Related Articles NMR assignment of the full-length ribosomal protein L11 from Thermotoga maritima. J Biomol NMR. 2003 Feb;25(2):163-4 Authors: Ilin S, Hoskins A, Schwalbe H, Wöhnert J
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR identification of epitopes of Lyme disease antigen OspA to monoclonal antibodies.
NMR identification of epitopes of Lyme disease antigen OspA to monoclonal antibodies. Related Articles NMR identification of epitopes of Lyme disease antigen OspA to monoclonal antibodies. J Mol Biol. 1998 Aug 7;281(1):61-7 Authors: Huang X, Yang X, Luft BJ, Koide S Outer surface protein A (OspA) from the Lyme disease spirochete Borrelia burgdorferi has been a focus of vaccine development. We have identified epitopes of OspA to two monoclonal antibodies (mAbs) by comparing NMR chemical shifts of free OspA and those in Fab complexes....
nmrlearner Journal club 0 11-17-2010 11:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:31 AM.


Map