BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-08-2014, 05:52 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 20,197
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.

Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.

Related Articles Fluorinated Aromatic Amino Acids are Sensitive 19F NMR Probes for Bromodomain-Ligand Interactions.

ACS Chem Biol. 2014 Oct 7;

Authors: Mishra NK, Urick AK, Ember S, Schonbrunn E, Pomerantz WC

Abstract
We describe a 19F NMR method for detecting bromodomain-ligand interactions using fluorine-labeled aromatic amino acids due to the conservation of aromatic residues in the bromodomain binding site. We test the sensitivity, accuracy, and speed of this method with small molecule ligands (+)-JQ1, BI2536, Dinaciclib, TG101348, and acetaminophen using three bromodomains Brd4, BrdT and BPTF. Simplified 19F NMR spectra allowed for simultaneous testing of multiple bromodomains to assess selectivity and identification of a new BPTF ligand. Fluorine labeling only modestly affected Brd4 structure and function assessed by isothermal titration calorimetry, circular dichroism, and x-ray crystallography. The speed, ease of interpretation, and low concentration of protein needed for binding experiments affords a new method to discover and characterize both native and new ligands.


PMID: 25290579 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Development and application of aromatic [13C, 1H] SOFAST-HMQC NMR experiment for nucleic acids
Development and application of aromatic SOFAST-HMQC NMR experiment for nucleic acids Abstract Higher sensitivity of NMR spectrometers and novel isotopic labeling schemes have ushered the development of rapid data acquisition methodologies, improving the time resolution with which NMR data can be acquired. For nucleic acids, longitudinal relaxation optimization in conjunction with Ernst angle excitation (SOFAST-HMQC) for imino protons, in addition to rendering rapid pulsing, has been demonstrated to yield significant improvements in sensitivity per...
nmrlearner Journal club 0 09-04-2014 02:31 PM
15N-permethylated amino acids as efficient probes for MRI-DNP applications
From The DNP-NMR Blog: 15N-permethylated amino acids as efficient probes for MRI-DNP applications Chiavazza, E., et al., 15N-permethylated amino acids as efficient probes for MRI-DNP applications. Contrast Media Mol Imaging, 2013. 8(5): p. 417-21. http://www.ncbi.nlm.nih.gov/pubmed/23740812
nmrlearner News from NMR blogs 0 02-21-2014 08:51 PM
[NMR paper] Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan-Cyanovirin Interactions by Using 19 F NMR Spectroscopy.
Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan-Cyanovirin Interactions by Using 19 F NMR Spectroscopy. Fluorinated Carbohydrates as Lectin Ligands: Dissecting Glycan-Cyanovirin Interactions by Using 19 F NMR Spectroscopy. Chemistry. 2013 Feb 28; Authors: Matei E, André S, Glinschert A, Infantino AS, Oscarson S, Gabius HJ, Gronenborn AM Abstract NMR spectroscopy and isothermal titration calorimetry (ITC) are powerful methods to investigate ligand-protein interactions. Here, we present a versatile and sensitive fluorine NMR...
nmrlearner Journal club 0 03-01-2013 09:57 PM
[Question from NMRWiki Q&A forum] 13C quaternary centers in amino acids
13C quaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxylic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heard the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 09-01-2011 07:20 AM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-31-2011 07:12 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 01-28-2011 04:52 AM
[NMR paper] TINS, target immobilized NMR screening: an efficient and sensitive method for ligand
TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Related Articles TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol. 2005 Feb;12(2):207-16 Authors: Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, Hollander JG, Filippov DV, Hajduk PJ, Siegal G We propose a ligand screening method, called TINS (target immobilized NMR screening), which reduces the amount of target required for the fragment-based approach to drug discovery. Binding is detected by...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets po
Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Related Articles Assigning the NMR spectra of aromatic amino acids in proteins: analysis of two Ets pointed domains. Biochem Cell Biol. 1998;76(2-3):379-90 Authors: Slupsky CM, Gentile LN, McIntosh LP The measurement of interproton nuclear Overhauser enhancements (NOEs) and dihedral angle restraints of aromatic amino acids is a critical step towards determining the structure of a protein. The complete assignment of the resonances from aromatic...
nmrlearner Journal club 0 11-17-2010 11:06 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:08 PM.


Map