BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-19-2010, 08:29 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by m

Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR.

Related Articles Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR.

Biochemistry. 2000 Oct 17;39(41):12614-22

Authors: Mulder FA, Hon B, Muhandiram DR, Dahlquist FW, Kay LE

The Leu99-->Ala mutant of T4 lysozyme contains a large internal cavity in the core of its C-terminal domain that is capable of reversibly binding small hydrophobic compounds. Although the cavity is completely buried, molecules such as benzene or xenon can exchange rapidly in and out. The dynamics of the unliganded protein have been compared to the wild-type protein by measuring the NMR spin relaxation rates of backbone amide and side chain methyl nuclei. Many residues surrounding the cavity were found to be affected by a chemical exchange process with a rate of 1500 +/- 200 s(-1), which is quenched upon addition of saturating amounts of the ligand xenon. The relationship between the structure, dynamics, and energetics of the T4 lysozyme mutant is discussed.

PMID: 11027141 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy.
Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy. Related Articles Dynamics of xenon binding inside the hydrophobic cavity of pseudo-wild-type bacteriophage T4 lysozyme explored through xenon-based NMR spectroscopy. J Am Chem Soc. 2005 Aug 24;127(33):11676-83 Authors: Desvaux H, Dubois L, Huber G, Quillin ML, Berthault P, Matthews BW Wild-type bacteriophage T4 lysozyme contains a hydrophobic cavity with binding properties that have been...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Fluctuations in free or substrate-complexed lysozyme and a mutant of it detected on x
Fluctuations in free or substrate-complexed lysozyme and a mutant of it detected on x-ray crystallography and comparison with those detected on NMR. Related Articles Fluctuations in free or substrate-complexed lysozyme and a mutant of it detected on x-ray crystallography and comparison with those detected on NMR. J Biochem. 2002 May;131(5):701-4 Authors: Ohmura T, Motoshima H, Ueda T, Imoto T A mutant lysozyme in which Arg14 and His15 were deleted together exhibited higher activity toward glycol chitin than the wild-type lysozyme. Moreover,...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy:
Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Related Articles Calcium-induced refolding of the calmodulin V136G mutant studied by NMR spectroscopy: evidence for interaction between the two globular domains. Biochemistry. 2000 Dec 26;39(51):15920-31 Authors: Fefeu S, Biekofsky RR, McCormick JE, Martin SR, Bayley PM, Feeney J The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme der
A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein stability. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme der
A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein stability. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR.
Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR. J Mol Biol. 1995 Nov 3;253(4):576-89 Authors: Finucane MD, Jardetzky O Amide proton exchange rates have been measured for fast-exchanging amides in trp aporepressor, and compared with the rates measured in the holorepressor. The results indicate that the presence...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] The influence of hydration on the conformation of lysozyme studied by solid-state 13C
The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy. Related Articles The influence of hydration on the conformation of lysozyme studied by solid-state 13C-NMR spectroscopy. Biopolymers. 1993 Apr;33(4):513-9 Authors: Gregory RB, Gangoda M, Gilpin RK, Su W 13C proton decoupled cross-polarization magic-angle spinning nmr spectra of lysozyme are reported as a function of hydration. Increases in hydration level enhance the resolution of the spectra, particularly in the aliphatic region, but has no...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Kinetics of amide proton exchange in parvalbumin studied by 1H 2-D NMR. A comparison
Kinetics of amide proton exchange in parvalbumin studied by 1H 2-D NMR. A comparison of the calcium and magnesium loaded forms. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Kinetics of amide proton exchange in parvalbumin studied by 1H 2-D NMR. A comparison of the calcium and magnesium loaded forms. Biochimie. 1992 Sep-Oct;74(9-10):837-44 Authors: Baldellon C, Padilla A, Cavé A The amide proton exchange rates have been measured for the pike parvalbumin loaded...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:37 AM.


Map