BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 02-29-2020, 09:52 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Determining methyl sidechain conformations in a CS-ROSETTA model using methyl 1 H- 13 C residual dipolar couplings

Determining methyl sidechain conformations in a CS-ROSETTA model using methyl 1 H- 13 C residual dipolar couplings

Abstract

Modelling of protein structures based on backbone chemical shifts, using programs such as CS-ROSETTA, is becoming increasingly popular, especially for systems where few restraints are available or where homologous structures are already known. While the reliability of CS-ROSETTA calculations can be improved by incorporation of some additional backbone NMR data such as those afforded by residual dipolar couplings or minimal NOE data sets involving backbone amide protons, the sidechain conformations are largely modelled by statistical energy terms. Here, we present a simple method based on methyl residual dipolar couplings that can be used to determine the rotameric state of the threefold symmetry axis of methyl groups that occupy a single rotamer, determine rotameric distributions, and identify regions of high flexibility. The method is demonstrated for methyl side chains of a deletion variant of the human chaperone DNAJB6b.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Measurement of residual dipolar couplings in methyl groups via carbon detection
Measurement of residual dipolar couplings in methyl groups via carbon detection Abstract Residual dipolar couplings (RDCs) provide both structural and dynamical information useful in the characterization of biological macromolecules. While most data come from the interaction of simple pairs of directly bonded spin-1/2 nuclei (1Hâ??15N, 1Hâ??13C, 1Hâ??1H), it is possible to acquire data from interactions among the multiple spins of 13C-labeled methyl groups (1H3â??13C). This is especially important because of the advantages that observation of...
nmrlearner Journal club 0 04-30-2019 03:58 PM
Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings
Modulating RNA Alignment Using Directional Dynamic Kinks: Application in Determining an Atomic-Resolution Ensemble for a Hairpin using NMR Residual Dipolar Couplings Loi?c Salmon, George M. Giambas?u, Evgenia N. Nikolova, Katja Petzold, Akash Bhattacharya, David A. Case and Hashim M. Al-Hashimi http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.5b07229/20150929/images/medium/ja-2015-07229f_0004.gif Journal of the American Chemical Society DOI: 10.1021/jacs.5b07229 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA ...
nmrlearner Journal club 0 09-30-2015 09:27 AM
Very large residual dipolar couplings from deuterated ubiquitin
Very large residual dipolar couplings from deuterated ubiquitin Abstract Main-chain 1HNâ??15N residual dipolar couplings (RDCs) ranging from approximately â??200 to 200 Hz have been measured for ubiquitin under strong alignment conditions in Pf1 phage. This represents a ten-fold increase in the degree of alignment over the typical weakly aligned samples. The measurements are made possible by extensive proton-dilution of the sample, achieved by deuteration of the protein with partial back-substitution of labile protons from 25 % H2O / 75 % D2O buffer. The spectral quality is further...
nmrlearner Journal club 0 07-30-2012 07:42 AM
Simultaneous measurement of 1Hâ??15N and Methyl 1Hmâ??13Cm residual dipolar couplings in large proteins
Simultaneous measurement of 1Hâ??15N and Methyl 1Hmâ??13Cm residual dipolar couplings in large proteins Abstract A two-dimensional TROSY-based SIM-13Cmâ??1Hm/1Hâ??15N NMR experiment for simultaneous measurements of methyl 1 D CH and backbone amide 1 D NH residual dipolar couplings (RDC) in {U-; Ileδ1-; Leu,Val-}-labeled samples of large proteins is described. Significant variation in the alignment tensor of the 82-kDa enzyme Malate synthase G is observed as a function of only slight changes in experimental conditions. The SIM-13Cmâ??1Hm/1Hâ??15N data sets provide convenient means...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Residual dipolar couplings: are multiple independent alignments always possible?
Residual dipolar couplings: are multiple independent alignments always possible? Abstract RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the proteinâ??s interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some...
nmrlearner Journal club 0 12-26-2010 04:43 AM
[NMR paper] Sensitivity of NMR residual dipolar couplings to perturbations in folded and denature
Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease. Related Articles Sensitivity of NMR residual dipolar couplings to perturbations in folded and denatured staphylococcal nuclease. Biochemistry. 2005 May 3;44(17):6392-403 Authors: Sallum CO, Martel DM, Fournier RS, Matousek WM, Alexandrescu AT The invariance of NMR residual dipolar couplings (RDCs) in denatured forms of staphylococcal nuclease to changes in denaturant concentration or amino acid sequence has previously been attributed...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Residual dipolar couplings in NMR structure analysis.
Residual dipolar couplings in NMR structure analysis. Related Articles Residual dipolar couplings in NMR structure analysis. Annu Rev Biophys Biomol Struct. 2004;33:387-413 Authors: Lipsitz RS, Tjandra N Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Residual dipolar couplings: synergy between NMR and structural genomics.
Residual dipolar couplings: synergy between NMR and structural genomics. Related Articles Residual dipolar couplings: synergy between NMR and structural genomics. J Biomol NMR. 2002 Jan;22(1):1-8 Authors: Al-Hashimi HM, Patel DJ Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However,...
nmrlearner Journal club 0 11-24-2010 08:49 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:03 PM.


Map