BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 06-08-2018, 06:35 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,793
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.

Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.

Related Articles Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.

J Am Chem Soc. 2017 08 16;139(32):11233-11240

Authors: Oyen D, Fenwick RB, Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE

Abstract
The rate-determining step in the catalytic cycle of E. coli dihydrofolate reductase is tetrahydrofolate (THF) product release, which can occur via an allosteric or an intrinsic pathway. The allosteric pathway, which becomes accessible when the reduced cofactor NADPH is bound, involves transient sampling of a higher energy conformational state, greatly increasing the product dissociation rate as compared to the intrinsic pathway that obtains when NADPH is absent. Although the kinetics of this process are known, the enzyme structure and the THF product conformation in the transiently formed excited state remain elusive. Here, we use side-chain proton NMR relaxation dispersion measurements, X-ray crystallography, and structure-based chemical shift predictions to explore the structural basis of allosteric product release. In the excited state of the E:THF:NADPH product release complex, the reduced nicotinamide ring of the cofactor transiently enters the active site where it displaces the pterin ring of the THF product. The p-aminobenzoyl-l-glutamate tail of THF remains weakly bound in a widened binding cleft. Thus, through transient entry of the nicotinamide ring into the active site, the NADPH cofactor remodels the enzyme structure and the conformation of the THF to form a weakly populated excited state that is poised for rapid product release.


PMID: 28737940 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release.
High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/https:--academic.oup.com-images-oup_pubmed.png Related Articles High-resolution crystal structures and STD NMR mapping of human ABO(H) blood group glycosyltransferases in complex with trisaccharide reaction products suggest a molecular basis for product release. Glycobiology. 2017 Oct 01;27(10):966-977...
nmrlearner Journal club 0 05-24-2018 01:05 PM
Definingthe Structural Basis for Allosteric ProductRelease from E. coli DihydrofolateReductase Using NMR Relaxation Dispersion
Definingthe Structural Basis for Allosteric ProductRelease from E. coli DihydrofolateReductase Using NMR Relaxation Dispersion David Oyen, R. Bryn Fenwick, Phillip C. Aoto, Robyn L. Stanfield, Ian A. Wilson, H. Jane Dyson and Peter E. Wright http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.7b05958/20170803/images/medium/ja-2017-059585_0004.gif Journal of the American Chemical Society DOI: 10.1021/jacs.7b05958 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/xNS30QNm3gQ
nmrlearner Journal club 0 08-04-2017 03:16 AM
Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional AnalogueContributing to para-Aminosalicylic Acid Resistance
Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional AnalogueContributing to para-Aminosalicylic Acid Resistance http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/acs.biochem.5b00993/20160205/images/medium/bi-2015-009933_0008.gif Biochemistry DOI: 10.1021/acs.biochem.5b00993 http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/7-ZFbwbzVMM More...
nmrlearner Journal club 0 02-06-2016 03:10 PM
[NMR paper] Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in th
Refolding of tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study. Related Articles Refolding of tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study. Biochemistry. 1998 Jan 6;37(1):387-98 Authors: Hoeltzli SD, Frieden C Escherichia coli dihydrofolate reductase contains five tryptophan residues that are spatially distributed throughout the protein and located in different secondary structural elements....
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] 13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with
13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with methotrexate and with folic acid. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with methotrexate and with folic acid. FEBS Lett. 1992 Nov 9;312(2-3):147-51 Authors: Cheung HT, Birdsall B, Feeney J 13C NMR studies of 13C-labelled ligands bound to dihydrofolate reductase provide (DHFR) a powerful means of...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] Studies on ribonucleoside-diphosphate reductase from Escherichia coli. The product dC
Studies on ribonucleoside-diphosphate reductase from Escherichia coli. The product dCDP is a competitive inhibitor and functions as a spectroscopic probe for the substrate binding site; demonstration by enzyme kinetics and 1H NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Studies on ribonucleoside-diphosphate reductase from Escherichia coli. The product dCDP is a competitive inhibitor and functions as a spectroscopic probe for the substrate binding site;...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N an
The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N and 31P NMR study. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles The conformations of trimethoprim/E. coli dihydrofolate reductase complexes. A 15N and 31P NMR study. FEBS Lett. 1991 May 20;283(1):44-6 Authors: Huang FY, Yang QX, Huang TH, Gelbaum L, Kuyper LF We have employed 15N and 31P NMR techniques to characterize the conformations of trimethoprim (TMP)/E. coli dihydrofolate...
nmrlearner Journal club 0 08-21-2010 11:16 PM
[NMR paper] NMR studies of interactions of ligands with dihydrofolate reductase.
NMR studies of interactions of ligands with dihydrofolate reductase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR studies of interactions of ligands with dihydrofolate reductase. Biochem Pharmacol. 1990 Jul 1;40(1):141-52 Authors: Feeney J NMR spectroscopy is a useful technique for studying interactions, conformations and dynamic processes within ligand-protein complexes. Several examples of the application of the method to studies of complexes of anti-folate...
nmrlearner Journal club 0 08-21-2010 10:48 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:27 PM.


Map