BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-18-2011, 06:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,184
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default CONNJUR spectrum translator: an open source application for reformatting NMR spectral data

CONNJUR spectrum translator: an open source application for reformatting NMR spectral data


Abstract NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two key algorithmic improvements. This first is translation of NMR spectral data (time and frequency domain) to a single in-memory data model to allow addition of new file formats with two converter modules, a reader and a writer, instead of writing a separate converter to each existing format. Secondly, the use of layout descriptors allows a single fid data translation engine to be used for all formats. For the end user, sophisticated metadata readers allow conversion of the majority of files with minimum user configuration. The open source code is freely available at http://connjur.sourceforge.net for inspection and extension.
  • Content Type Journal Article
  • Pages 1-7
  • DOI 10.1007/s10858-011-9497-1
  • Authors
    • Ronald J. Nowling, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
    • Jay Vyas, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
    • Gerard Weatherby, Department of Computer Science/Information Technology, Western New England College, 1215 Wilbraham Road, Springfield, MA 01119, USA
    • Matthew W. Fenwick, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
    • Heidi J. C. Ellis, Department of Computer Science/Information Technology, Western New England College, 1215 Wilbraham Road, Springfield, MA 01119, USA
    • Michael R. Gryk, Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA

Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Visualizing the principal component of 1H,15N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C
Visualizing the principal component of 1H,15N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C Abstract Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding 1H,15N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C.
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. J Biomol NMR. 2011 Sep;51(1-2):115-22 Authors: Robertson IM, Boyko RF, Sykes BD Abstract Laboratories often repeatedly determine the structure of a given protein under a variety of conditions,...
nmrlearner Journal club 0 09-30-2011 06:00 AM
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C.
Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. Visualizing the principal component of (1)H, (15)N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. J Biomol NMR. 2011 Sep;51(1-2):115-22 Authors: Robertson IM, Boyko RF, Sykes BD Abstract Laboratories often repeatedly determine the structure of a given protein under a variety of conditions,...
nmrlearner Journal club 0 09-30-2011 05:59 AM
[NMR paper] 3D NMR experiments for measuring 15N relaxation data of large proteins: application t
3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41. Related Articles 3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41. J Magn Reson. 1998 Dec;135(2):368-72 Authors: Caffrey M, Kaufman J, Stahl SJ, Wingfield PT, Gronenborn AM, Clore GM A suite of 3D NMR experiments for measuring 15N-¿1H¿ NOE, 15N T1, and 15N T1rho values in large proteins, uniformly labeled with 15N and 13C, is presented. These...
nmrlearner Journal club 0 11-17-2010 11:15 PM
CONNJUR - open source integration environment for biomolecular NMR data analysis
CONNJUR Project website The CONNJUR Project is developing an open source integration environment for biomolecular NMR data analysis. CONNJUR software is a workflow generator, based on legacy NMR analysis applications, that is being developed as Open Source Software -- it is perpetually free for anyone to use, modify and distribute. CONNJUR is developed by a community of NMR spectroscopists and scientific programmers who aim to create and maintain NMR analysis tools bounded by the goals of excellent end-product, free of charge, open source software using the...
markber NMR software 0 11-01-2010 07:45 PM
[NMR software blog] Open Source NMR freeware
Open Source NMR freeware Most of the readers arrive here using Google, without knowing me and my blog. Usually they get very angry because they arrive... on the trapping post I wrote 3 years ago! I want to do something to keep them glad... So you want "open source" stuff? Do you know what it really means? Are you ready to compile, test, debug it and add a graphic interface to it? Just because you asked for it, here is a list of available projects. If you know other links, add them into a comment. CCPN NPK matNMR ProSpectND
nmrlearner News from NMR blogs 0 08-21-2010 06:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:36 PM.


Map