BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 09-19-2014, 03:07 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 20,045
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Change in molecular structure and dynamics of protein in milk protein concentrate powder upon ageing by solid-state carbon NMR

Change in molecular structure and dynamics of protein in milk protein concentrate powder upon ageing by solid-state carbon NMR

Publication date: Available online 18 September 2014
Source:Food Hydrocolloids

Author(s): Enamul Haque , Bhesh R. Bhandari , Michael J. Gidley , Hilton C. Deeth , Andrew K. Whittaker

Instability of proteins in dry form causes solubility loss of milk protein concentrate (MPC) powder upon ageing. High resolution solid state NMR techniques were used to investigate the changes in molecular structure and dynamics of proteins in MPC with varying moisture content (5.5-16.5% w/w) and storage period. The results indicate a slight higher rigidity of molecular domains of protein molecules of non-aged MPC compared to that of the long aged (at 25C) MPC. It could be suggested from this observation that long-term storage at high relative humidity (RH) may reduce rigidity of the molecular domains due to interaction with water rather than short-term storage at high RH. This may indicate increased molecular mobility of backbone and side chains of protein molecules due to plasticization during ageing which could facilitate protein-protein interaction and protein denaturation.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.
Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif Related Articles Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation. Biophys J. 2012 Oct 17;103(8):1735-43 Authors: Tsutsumi A, Javkhlantugs N, Kira A, Umeyama M, Kawamura I, Nishimura K, Ueda K,...
nmrlearner Journal club 0 03-21-2013 02:58 PM
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide.
Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. Combined Use of Replica-Exchange Molecular Dynamics and Magic-Angle-Spinning Solid-State NMR Spectral Simulations for Determining the Structure and Orientation of Membrane-Bound Peptide. J Phys Chem B. 2011 Jun 13; Authors: Ikeda K, Kameda T, Harada E, Akutsu H, Fujiwara T We report an approach to determining membrane-peptides and -protein complex structures by...
nmrlearner Journal club 0 06-15-2011 01:15 PM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR.
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR. Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR. J Am Chem Soc. 2011 Mar 14; Authors: Yang J, Aslimovska L, Glaubitz C Environmental factors such as temperature, hydration, and lipid bilayer properties are tightly coupled to the dynamics of membrane proteins. So far, site-resolved data visualizing the protein's response to alterations in these factors are rare, and conclusions had to be drawn from dynamic data averaged over the whole protein...
nmrlearner Journal club 0 03-16-2011 04:15 PM
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR
Molecular Dynamics of Proteorhodopsin in Lipid Bilayers by Solid-State NMR Jun Yang, Lubica Aslimovska and Clemens Glaubitz http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja109766n/aop/images/medium/ja-2010-09766n_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja109766n http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/VmNlca5pCIw
nmrlearner Journal club 0 03-15-2011 05:56 AM
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation.
Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. Biophys J. 2010 Nov 17;99(10):3282-9 Authors: Toraya S, Javkhlantugs N, Mishima D, Nishimura K, Ueda K, Naito A Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to...
nmrlearner Journal club 0 03-03-2011 12:34 PM
[NMR paper] Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy.
Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. Related Articles Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc. 2005 Sep 21;127(37):12965-74 Authors: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M It is shown that molecular structure and dynamics of a uniformly labeled membrane protein can be studied under magic-angle-spinning conditions. For this purpose, dipolar recoupling experiments...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Solid-state NMR and rigid body molecular dynamics to determine domain orientations of
Solid-state NMR and rigid body molecular dynamics to determine domain orientations of monomeric phospholamban. Related Articles Solid-state NMR and rigid body molecular dynamics to determine domain orientations of monomeric phospholamban. J Am Chem Soc. 2002 Aug 14;124(32):9392-3 Authors: Mascioni A, Karim C, Zamoon J, Thomas DD, Veglia G Solid-state NMR spectroscopy, in conjunction with rigid body molecular dynamics calculations, shows that monomeric phospholamban in lipid bilayers has two distinct helical domains, with an interhelical angle...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR studies of the structure and environment of the milk protein alpha-lactalbumin.
NMR studies of the structure and environment of the milk protein alpha-lactalbumin. Related Articles NMR studies of the structure and environment of the milk protein alpha-lactalbumin. Basic Life Sci. 1990;56:231-53 Authors: Berliner LJ, Kaptein R, Koga K, Musci G
nmrlearner Journal club 0 08-21-2010 10:48 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:42 AM.


Map