BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 01-26-2018, 12:08 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 18,793
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Application of 2D-NMR with room temperature NMR probes for the assessment of the higher order structure of filgrastim.

Application of 2D-NMR with room temperature NMR probes for the assessment of the higher order structure of filgrastim.

Related Articles Application of 2D-NMR with room temperature NMR probes for the assessment of the higher order structure of filgrastim.

J Pharm Biomed Anal. 2017 Jul 15;141:229-233

Authors: Brinson RG, Ghasriani H, Hodgson DJ, Adams KM, McEwen I, Freedberg DI, Chen K, Keire DA, Aubin Y, Marino JP

Abstract
The higher order structure (HOS) of biotherapeutics is a critical quality attribute that can be evaluated by nuclear magnetic resonance (NMR) spectroscopy at atomic resolution. NMR spectral mapping of HOS can be used to establish HOS consistency of a biologic across manufacturing changes or to compare a biosimilar to an innovator reference product. A previous inter-laboratory study performed using filgrastim drug products demonstrated that two-dimensional (2D)-NMR 1HN-15NH heteronuclear correlation spectroscopy is a highly robust and precise method for mapping the HOS of biologic drugs at natural abundance using high sensitivity NMR 'cold probes.' Here, the applicability of the 2D-NMR method to fingerprint the HOS of filgrastim products is demonstrated using lower sensitivity, room temperature NMR probes. Combined chemical shift deviation and principal component analysis are used to illustrate the performance and inter-laboratory precision of the 2D-NMR method when implemented on room temperature probes.


PMID: 28454057 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Monitoring Effects of Excipients, Formulation Parameters and Mutations on the High Order Structure of Filgrastim by NMR.
Monitoring Effects of Excipients, Formulation Parameters and Mutations on the High Order Structure of Filgrastim by NMR. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Monitoring Effects of Excipients, Formulation Parameters and Mutations on the High Order Structure of Filgrastim by NMR. Pharm Res. 2015 Oct;32(10):3365-75 Authors: Aubin Y, Hodgson DJ, Thach WB, Gingras G, Sauvé S Abstract PURPOSE: Filgrastim is the generic...
nmrlearner Journal club 0 06-24-2016 12:53 PM
[NMR paper] Precision and robustness of 2D-NMR for structure assessment of filgrastim biosimilars.
Precision and robustness of 2D-NMR for structure assessment of filgrastim biosimilars. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nbt.gif Related Articles Precision and robustness of 2D-NMR for structure assessment of filgrastim biosimilars. Nat Biotechnol. 2016 Feb;34(2):139-41 Authors: Ghasriani H, Hodgson DJ, Brinson RG, McEwen I, Buhse LF, Kozlowski S, Marino JP, Aubin Y, Keire DA PMID: 26849514
nmrlearner Journal club 0 06-22-2016 09:14 PM
Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy
From The DNP-NMR Blog: Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy Debelouchina, G.T., et al., Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy. J Am Chem Soc, 2013. 135(51): p. 19237-47. http://www.ncbi.nlm.nih.gov/pubmed/24304221
nmrlearner News from NMR blogs 0 01-27-2014 09:59 PM
Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control
From The DNP-NMR Blog: Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control Sakaguchi, S., et al., Proton polarization in photo-excited aromatic molecule at room temperature enhanced by intense optical source and temperature control. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013. 317(0): p. 679-684. http://www.sciencedirect.com/science/article/pii/S0168583X13008872
nmrlearner News from NMR blogs 0 01-23-2014 01:37 AM
[NMR paper] Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy.
Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy. Related Articles Higher Order Amyloid Fibril Structure by MAS NMR and DNP Spectroscopy. J Am Chem Soc. 2013 Dec 4; Authors: Debelouchina GT, Bayro MJ, Fitzpatrick AW, Ladizhansky V, Colvin MT, Caporini MA, Jaroniec CP, Bajaj VS, Rosay MM, Macphee CE, Vendruscolo M, Maas WE, Dobson CM, Griffin RG Abstract Protein magic angle spinning (MAS) NMR spectroscopy has generated structural models of several amyloid fibril systems, thus providing valuable information regarding the...
nmrlearner Journal club 0 12-07-2013 01:00 PM
Journal Highlight: Assessment of higher order structure comparability in ... - spectroscopyNOW.com
<img alt="" height="1" width="1" /> Journal Highlight: Assessment of higher order structure comparability in ... spectroscopyNOW.com Abstract: In this work, we applied nuclear magnetic resonance (NMR) spectroscopy to rapidly assess higher order structure (HOS) comparability in protein samples. Using a variation of the NMR fingerprinting approach described by Panjwani et al. Journal Highlight: Assessment of higher order structure comparability in ... - spectroscopyNOW.com More...
nmrlearner Online News 0 06-03-2013 04:21 PM
Journal Highlight: Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy
Journal Highlight: Assessment of higher order structure comparability in therapeutic proteins using nuclear magnetic resonance spectroscopy http://www.spectroscopynow.com/common/images/thumbnails/13ef9b3d882.jpgNMR spectroscopy using a fingerprinting approach has been used to rapidly assess higher order structure comparability in three nonglycosylated proteins spanning a molecular weight range of 6.5–67 kDa. Read the rest at Spectroscopynow.com
nmrlearner General 0 06-03-2013 04:21 PM
[NMR paper] Improving NMR sensitivity in room temperature and cooled probes with dipolar ions.
Improving NMR sensitivity in room temperature and cooled probes with dipolar ions. Related Articles Improving NMR sensitivity in room temperature and cooled probes with dipolar ions. J Magn Reson. 2005 Apr;173(2):339-43 Authors: Lane AN, Arumugam S The response of inverse triple resonance cold and conventional probes to ionic strength has been compared under a variety of conditions relevant to protein NMR. Increasing the salt concentration degrades probe performance in terms of sensitivity, and the effect is more severe for cold probes and...
nmrlearner Journal club 0 11-25-2010 08:21 PM


Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2018, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:31 PM.


Map