BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 03-16-2020, 04:59 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,225
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Active S2168 and inactive S21IRS pinholin interact differently with the lipid bilayer: A 31P and 2H solid state NMR study.

Active S2168 and inactive S21IRS pinholin interact differently with the lipid bilayer: A 31P and 2H solid state NMR study.

Related Articles Active S2168 and inactive S21IRS pinholin interact differently with the lipid bilayer: A 31P and 2H solid state NMR study.

Biochim Biophys Acta Biomembr. 2020 Mar 05;:183257

Authors: Drew DL, Butcher B, Sahu ID, Ahammad T, Dixit G, Lorigan GA

Abstract
Pinholins are a family of lytic membrane proteins responsible for the lysis of the cytosolic membrane in host cells of double stranded DNA bacteriophages. Protein-lipid interactions have been shown to influence membrane protein topology as well as its function. This work investigated the interactions of pinholin with the phospholipid bilayer while in active and inactive confirmations to elucidate the different interactions the two forms have with the bilayer. Pinholin incorporated into deuterated DMPC-d54 lipid bilayers, along with 31P and 2H solid state NMR (SS-NMR) spectroscopy were used to probe the protein-lipid interactions with the phosphorus head group at the surface of the bilayer while interactions with the 2H nuclei were used to study the hydrophobic core. A comparison of the 31P chemical shift anisotropy (CSA) values of the active S2168 pinholin and inactive S21IRS pinholin indicated stronger head group interactions for the pinholin in its active form when compared to that of the inactive form supporting the model of a partially externalized peripheral transmembrane domain (TMD) of the active S2168 instead of complete externalized TMD1 as suggested by Ahammad et al. JPC B 2019. The 2H quadrupolar splitting analysis showed a decrease in spectral width for both forms of the pinholin when compared to the empty bilayers at all temperatures. In this case the decrease in the spectral width of the inactive S21IRS form of the pinholin showed stronger interactions with the acyl chains of the bilayer. The presence of the inactive form's additional TMD within the membrane was supported by the loss of peak resolution observed in the 2H NMR spectra.


PMID: 32147355 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy.
Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--production.springer.de-OnlineResources-Logos-springerlink.gif Related Articles Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy. Methods Mol Biol. 2020;2127:397-419 Authors: Bibow S Abstract The relationship of membrane protein function and the surrounding lipid bilayer goes far beyond...
nmrlearner Journal club 0 03-03-2020 11:18 PM
[NMR paper] Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints.
Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. Related Articles Oligomeric Structure of Anabaena Sensory Rhodopsin in a Lipid Bilayer Environment by Combining Solid-State NMR and Long-range DEER Constraints. J Mol Biol. 2017 May 10;: Authors: Milikisiyants S, Wang S, Munro RA, Donohue M, Ward ME, Bolton D, Brown LS, Smirnova TI, Ladizhansky V, Smirnov AI Abstract Oligomerization of membrane proteins is common in nature. Here, we...
nmrlearner Journal club 0 05-16-2017 10:27 PM
[NMR paper] Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.
Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments. Related Articles Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments. Magn Reson Chem. 2016 May 9; Authors: Wang J, Zhang Z, Zhao W, Wang L, Yang J Abstract The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can...
nmrlearner Journal club 0 05-11-2016 08:04 PM
[NMR paper] Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation.
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. J Biomol NMR. 2015 Jan 13; Authors: Ding Y, Fujimoto LM, Yao Y, Marassi FM Abstract Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the...
nmrlearner Journal club 0 01-13-2015 02:31 PM
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation
Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation Abstract Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396â??10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer...
nmrlearner Journal club 0 01-12-2015 11:31 PM
[NMR paper] Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy.
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy. Related Articles Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy. Biochim Biophys Acta. 2014 May 13; Authors: Banigan JR, Gayen A, Traaseth NJ Abstract Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid...
nmrlearner Journal club 0 05-20-2014 11:10 PM
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy
Correlating Lipid Bilayer Fluidity with Sensitivity and Resolution of Polytopic Membrane Protein Spectra by Solid-State NMR Spectroscopy Publication date: Available online 13 May 2014 Source:Biochimica et Biophysica Acta (BBA) - Biomembranes</br> Author(s): James R. Banigan , Anindita Gayen , Nathaniel J. Traaseth</br> Solid-state NMR spectroscopy has emerged as an excellent tool to study the structure and dynamics of membrane proteins under native-like conditions in lipid bilayers. One of the key considerations in experimental design is the uniaxial rotational...
nmrlearner Journal club 0 05-14-2014 04:50 AM
[NMR paper] Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Related Articles Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc. 2013 Nov;8(11):2256-70 Authors: Das N, Murray DT, Cross TA Abstract
nmrlearner Journal club 0 10-27-2013 12:53 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:13 PM.


Map