BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 08-21-2013, 08:49 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default ?2 -Adrenergic Receptor Activation by Agonists Studied with (19) F NMR Spectroscopy.

?2 -Adrenergic Receptor Activation by Agonists Studied with (19) F NMR Spectroscopy.

?2 -Adrenergic Receptor Activation by Agonists Studied with (19) F NMR Spectroscopy.

Angew Chem Int Ed Engl. 2013 Aug 16;

Authors: Horst R, Liu JJ, Stevens RC, Wüthrich K


Abstract
Proteins in slow motion: (19) F NMR studies indicate that equilibria between active and inactive states of the human ?2 -adrenergic receptor require extensive structural rearrangements (arrows in picture). This was shown by an enthalpy difference of ?Ho ?40 kJ mol(-1) and a slow exchange rate, with kex
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] The Interaction between tRNA(Lys) 3 and the Primer Activation Signal Deciphered by NMR Spectroscopy.
The Interaction between tRNA(Lys) 3 and the Primer Activation Signal Deciphered by NMR Spectroscopy. Related Articles The Interaction between tRNA(Lys) 3 and the Primer Activation Signal Deciphered by NMR Spectroscopy. PLoS One. 2013;8(6):e64700 Authors: Sleiman D, Barraud P, Brachet F, Tisne C Abstract The initiation of reverse transcription of the human immunodeficiency virus type 1 (HIV-1) requires the opening of the three-dimensional structure of the primer tRNA(Lys) 3 for its annealing to the viral RNA at the primer binding site...
nmrlearner Journal club 0 06-14-2013 07:31 PM
[NMR paper] G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy.
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Related Articles G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J. 2013 Apr 15;451(2):343 Authors: Ding X, Zhao X, Watts A Abstract
nmrlearner Journal club 0 03-29-2013 07:52 PM
[NMR paper] G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy.
G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy. Biochem J. 2013 Mar 15;450(3):443-57 Authors: Ding X, Zhao X, Watts A Abstract GPCRs (G-protein-coupled receptors) are versatile signalling molecules at the cell surface and make up the largest and most diverse family of membrane receptors in the human genome. They convert a large variety of extracellular stimuli into...
nmrlearner Journal club 0 03-01-2013 09:57 PM
The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR.
The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR. The interaction of cannabinoid receptor agonists, CP55940 and WIN55212-2 with membranes using solid state 2H NMR. Biochim Biophys Acta. 2011 Sep;1808(9):2095-101 Authors: Tian X, Pavlopoulos S, Yang DP, Makriyannis A Abstract Two key commonly used cannabinergic agonists, CP55940 and WIN55212-2, are investigated for their effects on the lipid membrane bilayer using (2)H solid state NMR, and the results are compared with our...
nmrlearner Journal club 0 09-13-2011 08:27 PM
[NMR paper] Structural studies of the putative helix 8 in the human beta(2) adrenergic receptor:
Structural studies of the putative helix 8 in the human beta(2) adrenergic receptor: an NMR study. Related Articles Structural studies of the putative helix 8 in the human beta(2) adrenergic receptor: an NMR study. Biochim Biophys Acta. 2004 May 27;1663(1-2):74-81 Authors: Katragadda M, Maciejewski MW, Yeagle PL The recently reported crystal structure of bovine rhodopsin revealed a cytoplasmic helix (helix 8) in addition to the seven transmembrane helices. This domain is roughly perpendicular to the transmembrane bundle in the presence of an...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR structure of the second intracellular loop of the alpha 2A adrenergic receptor: e
NMR structure of the second intracellular loop of the alpha 2A adrenergic receptor: evidence for a novel cytoplasmic helix. Related Articles NMR structure of the second intracellular loop of the alpha 2A adrenergic receptor: evidence for a novel cytoplasmic helix. Biochemistry. 2002 Mar 19;41(11):3596-604 Authors: Chung DA, Zuiderweg ER, Fowler CB, Soyer OS, Mosberg HI, Neubig RR A major, unresolved question in signal transduction by G protein coupled receptors (GPCRs) is to understand how, at atomic resolution, a GPCR activates a G protein. A...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Dynamic activation of protein function: a view emerging from NMR spectroscopy.
Dynamic activation of protein function: a view emerging from NMR spectroscopy. Related Articles Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol. 2001 Nov;8(11):926-31 Authors: Wand AJ Recent developments in solution NMR methods have allowed for an unprecedented view of protein dynamics. Current insights into the nature of protein dynamics and their potential influence on protein structure, stability and function are reviewed. Particular emphasis is placed on the potential of fast side chain motion...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by
19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F-. Related Articles 19F and 31P NMR spectroscopy of G protein alpha subunits. Mechanism of activation by Al3+ and F-. J Biol Chem. 1991 Feb 25;266(6):3396-401 Authors: Higashijima T, Graziano MP, Suga H, Kainosho M, Gilman AG 19F and 31P NMR spectroscopy was used to study the mechanism of activation of the alpha subunits of guanine nucleotide-binding regulatory proteins (G proteins) by Al3+, Mg2+, and F-. 19F NMR spectra of solutions containing Al3+,...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:43 AM.


Map