BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 11-24-2010, 09:16 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 14N NMR relaxation times of several protein amino acids in aqueous solution--comparis

14N NMR relaxation times of several protein amino acids in aqueous solution--comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms.

Related Articles 14N NMR relaxation times of several protein amino acids in aqueous solution--comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms.

J Magn Reson. 2003 Oct;164(2):294-303

Authors: Troganis AN, Tsanaktsidis C, Gerothanassis IP

The 14N nuclear magnetic resonance (NMR) linewidths of the alpha-amino groups of several protein amino acids were measured in aqueous solution, with and without composite proton decoupling, to estimate the effect of proton exchange and molecular weight on the linewidths. It is shown that, contrary to earlier claims, the increase in the linewidth at low pH is not exclusively due to the effect of proton exchange broadening. The 14N linewidths, under composite proton decoupling, increase with the bulk of the amino acid, and increase at low pH. Statistical treatment of the experimental 14N and literature 17O NMR data was performed assuming two models: (i) an isotropic molecular reorientation of a rigid sphere in a medium of viscosity eta, (ii) a stochastic diffusion of the amino and carboxyl groups comprising contributions from internal (tauint) and overall (taumol) motions. Assuming a single correlation time from overall molecular reorientation (taumol), then, a linear correlation was found between the linewidths and the molecular weights of the protein amino acids at the pH values 0.5 and 6.0, which are characteristic of the cationic and zwitterionic forms, respectively. The slopes of the straight-lines were found to be dependent of pH for 14N, contrary to the 17O linear correlations whose slopes were found to be independent of pH. Assuming effective correlation times of the amino and carboxyl groups, which comprise contributions from the internal (tauint) and overall (taumol) motions, then, a significant improvement of the statistics of the regression analysis was observed. The 14N relaxation data, in conjunction with 17O NMR linewidths, can be interpreted by assuming that the 14N quadrupole coupling constants (NQCCs) are influenced by the protonation state of the carboxyl group, the 17O NQCCs remain constant, and the cationic form of the amino acids is hydrated by an excess of 1-3 molecules of water relative to the zwitterionic state.

PMID: 14511597 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[Question from NMRWiki Q&A forum] 13C quaternary centers in amino acids
13C quaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxylic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heard the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 09-01-2011 07:20 AM
[Question from NMRWiki Q&A forum] 13C cuaternary centers in amino acids
13C cuaternary centers in amino acids I've got a sample of about 5mg of an amino acid that is the final product of a a synthesis. Due to the long relaxation time that the carboxilic and the alpha C we only got a 200 varian Mercury instrument and we're unable to obtain those signals. I was wondering if an APT is better than DEPT, because we're only interested in this signals and i've heart the overall pulse sequence is shorter than the DEPT, increasing the number of scans in the same period of time Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 08-31-2011 07:12 PM
[KPWU blog] Names of Atoms of Amino acids
Names of Atoms of Amino acids I really hate the inconsistent nomenclature of atoms of amino acids between different programs/database. I finished all NOESY assignment on Sparky using PDB nomenclature and the Sparky XPLOR constraint plugin (shortcut xf) doesn’t take care of the differences between XPLOR and PDB. Thus I have to find a table showing me the differences of names http://stats.wordpress.com/b.gif?host=kpwu.wordpress.com&blog=76132&post=262&subd=kpwu&ref=&feed=1 Go to KPWU blog to read complete post.
nmrlearner News from NMR blogs 0 01-28-2011 04:52 AM
[NMR paper] Effective rotational correlation times of proteins from NMR relaxation interference.
Effective rotational correlation times of proteins from NMR relaxation interference. Related Articles Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson. 2006 Jan;178(1):72-6 Authors: Lee D, Hilty C, Wider G, Wüthrich K Knowledge of the effective rotational correlation times, tauc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of tauc enables...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Study of the behaviour of amino acids in aqueous solution by time-domain NMR and high
Study of the behaviour of amino acids in aqueous solution by time-domain NMR and high-resolution NMR. Related Articles Study of the behaviour of amino acids in aqueous solution by time-domain NMR and high-resolution NMR. Magn Reson Chem. 2005 Apr;43(4):309-15 Authors: Khallouk M, Rutledge DN, Silva AM, Delgadillo I The study of protein hydration by time-domain NMR is complicated by the great number of interactions involved, resulting from the presence of several amino acids and the possible modifications produced by the various structures....
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Relaxation of water protons in highly concentrated aqueous protein systems studied by
Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy. Related Articles Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy. Z Naturforsch C. 2001 Nov-Dec;56(11-12):1075-81 Authors: Szuminska K, Gutsze A, Kowalczyk A Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] The solution conformations of amino acids from molecular dynamics simulations of Gly-
The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters. Related Articles The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters. Biochem Cell Biol. 1998;76(2-3):164-70 Authors: van der Spoel D The conformations that amino acids can adopt in the random coil state are of fundamental interest in the context of protein folding research and studies of protein-peptide interactions. To date, no...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] Comparison between the phi distribution of the amino acids in the protein database an
Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Comparison between the phi distribution of the amino acids in the protein database and NMR data indicates that amino acids have various phi propensities in the random coil conformation. J Mol Biol. 1995 Nov 24;254(2):322-33 Authors: Serrano L ...
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:24 AM.


Map