View Single Post
  #1  
Unread 05-19-2017, 04:40 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,188
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Double-Caging Linker for AND-Type Fluorogenic Construction of Protein/Antibody Bioconjugates and in situ Quantification

Double-Caging Linker for AND-Type Fluorogenic Construction of Protein/Antibody Bioconjugates and in situ Quantification


We report on in situ fluorescent quantification of the conjugation efficiency between azide-terminated synthetic polymers/ imaging probes and thiol-functionalized antibodies/proteins/peptides, by utilizing a doubly caged profluorescent and heterodifunctional core molecule (C1) as the self-sorting bridging unit. Orthogonal dual 'click' coupling of C1 with azide- and thiol-functionalized precursors leads to highly fluorescent bioconjugates, whereas single click products of C1 remain essentially nonfluorescent. This 'AND' logic gate-type fluorogenic feature also enables further integration with FRET processes. For the construction of antibody-probe conjugates from an anti-carcinoembryonic antigen and a quinone-caged profluorescent naphthalimide derivative, the dual 'click' coupling process with C1 can be conveniently monitored via emission turn-on of C1, whereas prominent changes in FRET ratios occur for antibody-probe conjugates when triggered by specific tumor-associated enzymes.

More...
Reply With Quote


Did you find this post helpful? Yes | No