BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 10-11-2023, 03:50 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,212
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Synthesis of a 13C-methylene-labeled isoleucine precursor as a useful tool for studying protein side-chain interactions and dynamics

Synthesis of a 13C-methylene-labeled isoleucine precursor as a useful tool for studying protein side-chain interactions and dynamics

Abstract

In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13Câ??1Â*H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-Ï? interactions in protein-ligand complexes.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic 15 N{ 1 H} NOE measurements: a tool for studying protein dynamics
Dynamic 15 N{ 1 H} NOE measurements: a tool for studying protein dynamics Abstract Intramolecular motions in proteins are one of the important factors that determine their biological activity and interactions with molecules of biological importance. Magnetic relaxation of 15N amide nuclei allows one to monitor motions of protein backbone over a wide range of time scales. 15N{1H} nuclear Overhauser effect is essential for the identification of fast backbone motions in proteins. Therefore, exact measurements of NOE values and their accuracies are...
nmrlearner Journal club 0 09-13-2020 09:18 AM
[NMR paper] Basic Experiments in 2H static NMR for the Characterization of Protein Side-Chain Dynamics.
Basic Experiments in 2H static NMR for the Characterization of Protein Side-Chain Dynamics. Related Articles Basic Experiments in 2H static NMR for the Characterization of Protein Side-Chain Dynamics. Methods. 2018 Apr 26;: Authors: Vugmeyster L, Ostrovsky D Abstract The focus of this review is the basic methodology for applications of static deuteron NMR for studies of dynamics in the side chains of proteins. We review experimental approaches for the measurements of static line shapes and relaxation rates as well as signal...
nmrlearner Journal club 0 05-01-2018 10:57 PM
Basic Experiments in 2H static NMR for the Characterization of Protein Side-Chain Dynamics
Basic Experiments in 2H static NMR for the Characterization of Protein Side-Chain Dynamics Publication date: Available online 27 April 2018 Source:Methods</br> Author(s): Liliya Vugmeyster, Dmitry Ostrovsky</br> The focus of this review is the basic methodology for applications of static deuteron NMR for studies of dynamics in the side chains of proteins. We review experimental approaches for the measurements of static line shapes and relaxation rates as well as signal enhancement strategies using the multiple echo acquisition scheme. Further, we describe...
nmrlearner Journal club 0 04-27-2018 05:00 AM
Probing Protein Side Chain Dynamics via (13)C NMR Relaxation.
Probing Protein Side Chain Dynamics via (13)C NMR Relaxation. Probing Protein Side Chain Dynamics via (13)C NMR Relaxation. Protein Pept Lett. 2011 Jan 11; Authors: Yang D Protein side chain dynamics is associated with protein stability, folding, and intermolecular interactions. Detailed dynamics information is crucial for the understanding of protein function and biochemical and biophysical properties, which can be obtained using NMR relaxation techniques. In this review, (13)C relaxation of methine, methylene and methyl groups with and without...
nmrlearner Journal club 0 01-13-2011 12:00 PM
[NMR paper] What contributions to protein side-chain dynamics are probed by NMR experiments? A mo
What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis. Related Articles What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis. J Mol Biol. 2005 May 27;349(1):185-203 Authors: Best RB, Clarke J, Karplus M Molecular dynamics simulations of the structurally homologous proteins TNfn3 and FNfn10 have been used to investigate the contributions to side-chain dynamics measured by NMR relaxation experiments. The...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studi
Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Related Articles Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Biochemistry. 2001 Jun 5;40(22):6559-69 Authors: Flynn PF, Bieber Urbauer RJ, Zhang H, Lee AL, Wand AJ A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-label
NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins. Related Articles NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins. J Biomol NMR. 2000 Aug;17(4):305-10 Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ We describe the direct observation of side chain-side chain hydrogen bonding interactions in proteins with sensitivity-enhanced NMR spectroscopy. Specifically, the remote correlation between the guanidinium nitrogen 15Nepsilon of arginine 71,...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Detection of very weak side chain-main chain hydrogen bonding interactions in medium-
Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. Related Articles Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy. J Biomol NMR. 2000 May;17(1):79-82 Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ We describe the direct observation of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled...
nmrlearner Journal club 0 11-18-2010 09:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:20 AM.


Map