BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Unread 04-02-2019, 01:35 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,191
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Towards complete polypeptide backbone NH assignment via combinatorial labeling

Towards complete polypeptide backbone NH assignment via combinatorial labeling

Publication date: Available online 29 March 2019

Source: Journal of Magnetic Resonance

Author(s): Frank Löhr, Jakob Gebel, Erik Henrich, Christopher Hein, Volker Dötsch

Abstract

Combinatorial selective isotope labeling is a valuable tool to facilitate polypeptide backbone resonance assignment in cases of low sensitivity or extensive chemical shift degeneracy. It involves recording of 15N-HSQC and 2D HN-projections of triple-resonance spectra on a limited set of samples containing different combinations of labeled and unlabeled amino acid types. Using labeling schemes in which the three backbone heteronuclei (amide nitrogen, ?-carbon and carbonyl carbon) are enriched in 15N or 13C isotopes – individually as well as simultaneously – usually yields abundant amino-acid type information of consecutive residues i and i-1. Although this results in a large number of anchor points that can be used in the sequential assignment process, for most amide signals the exact positioning of the corresponding residue the polypeptide sequence still relies on matching intra- and interresidual 13C chemical shifts obtained from 3D spectra. An obvious way to obtain more sequence-specific assignments directly with combinatorial labeling would be to increase the number of samples. This is, however, undesirable because of increased sample preparation efforts and costs. Irrespective of the number of samples, unambiguous assignments cannot be accomplished for i-1/i pairs that are not unique in the sequence. Here we show that the ambiguity for non-unique pairs can be resolved by including information about the labeling state of residues i+1 and i-2. Application to a 35-residue peptide resulted in complete assignments of all detectable signals in the 15N HSQC which, due to its repetitive sequence and 13C chemical shift degeneracies, was difficult to achieve by other means. For a medium-sized protein (165 residues, rotational correlation time 8.2 ns) the improved protocol allowed the extent of backbone amide assignment to be expanded to 88 % solely using a suite of 2D 1H-15N correlated spectra.



Graphical abstract







More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study.
Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study. Acceleration of protein backbone NMR assignment by combinatorial labeling: Application to a small molecule binding study. Biopolymers. 2016 Dec 30;: Authors: Hein C, Löhr F, Schwarz D, Dötsch V Abstract Selective labeling with stable isotopes has long been recognized as a valuable tool in protein NMR to alleviate signal overlap and sensitivity limitations. In this study, combinatorial (15) N-, (13) C(?) -,...
nmrlearner Journal club 0 12-31-2016 12:18 PM
Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment
Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment Abstract Obtaining NMR assignments for slowly tumbling molecules such as detergent-solubilized membrane proteins is often compromised by low sensitivity as well as spectral overlap. Both problems can be addressed by amino-acid specific isotope labeling in conjunction with 15Nâ??1H correlation experiments. In this work an extended combinatorial selective in vitro labeling scheme is proposed that seeks to reduce the number of samples required for assignment. Including three...
nmrlearner Journal club 0 01-21-2012 06:26 PM
A simplified recipe for assigning amide NMR signals using combinatorial (14)N amino acid inverse-labeling.
A simplified recipe for assigning amide NMR signals using combinatorial (14)N amino acid inverse-labeling. A simplified recipe for assigning amide NMR signals using combinatorial (14)N amino acid inverse-labeling. J Struct Funct Genomics. 2011 Aug 25; Authors: Hiroaki H, Umetsu Y, Nabeshima YI, Hoshi M, Kohda D Abstract Assignment of backbone amide proton resonances is one of the most time-consuming stages of any protein NMR study when the protein samples behave non-ideally. A robust and convenient NMR procedure for analyzing spectra of...
nmrlearner Journal club 0 08-26-2011 04:22 PM
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR. 2010 Dec 18; Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner Journal club 0 12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner Journal club 0 12-21-2010 02:14 AM
[NMR paper] Reconsidering complete search algorithms for protein backbone NMR assignment.
Reconsidering complete search algorithms for protein backbone NMR assignment. Related Articles Reconsidering complete search algorithms for protein backbone NMR assignment. Bioinformatics. 2005 Sep 1;21 Suppl 2:ii230-6 Authors: Vitek O, Bailey-Kellogg C, Craig B, Kuliniewicz P, Vitek J MOTIVATION: Nuclear magnetic resonance (NMR) spectroscopy is widely used to determine and analyze protein structures. An essential step in NMR studies is determining the backbone resonance assignment, which maps individual atoms to experimentally measured...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] A combinatorial selective labeling method for the assignment of backbone amide NMR re
A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. Related Articles A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc. 2004 Apr 28;126(16):5020-1 Authors: Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ A combinatorial selective labeling (CSL) method is presented for the assignment of backbone amide NMR resonances, which has a particular application in the identification of protein-ligand interaction sites. The method builds on the dual...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Complete resonance assignment for the polypeptide backbone of interleukin 1 beta usin
Complete resonance assignment for the polypeptide backbone of interleukin 1 beta using three-dimensional heteronuclear NMR spectroscopy. Related Articles Complete resonance assignment for the polypeptide backbone of interleukin 1 beta using three-dimensional heteronuclear NMR spectroscopy. Biochemistry. 1990 Apr 10;29(14):3542-56 Authors: Driscoll PC, Clore GM, Marion D, Wingfield PT, Gronenborn AM The complete sequence-specific assignment of the 15N and 1H backbone resonances of the NMR spectrum of recombinant human interleukin 1 beta (153...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:36 AM.


Map