View Single Post
  #1  
Unread 11-19-2010, 08:29 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,192
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default 13C NMR chemical shifts can predict disulfide bond formation.

13C NMR chemical shifts can predict disulfide bond formation.

Related Articles 13C NMR chemical shifts can predict disulfide bond formation.

J Biomol NMR. 2000 Oct;18(2):165-71

Authors: Sharma D, Rajarathnam K

The presence of disulfide bonds can be detected unambiguously only by X-ray crystallography, and otherwise must be inferred by chemical methods. In this study we demonstrate that 13C NMR chemical shifts are diagnostic of disulfide bond formation, and can discriminate between cysteine in the reduced (free) and oxidized (disulfide bonded) state. A database of cysteine 13C C(alpha) and C(beta) chemical shifts was constructed from the BMRB and Sheffield databases, and published journals. Statistical analysis indicated that the C(beta) shift is extremely sensitive to the redox state, and can predict the disulfide-bonded state. Further, chemical shifts in both states occupy distinct clusters as a function of secondary structure in the C(alpha)/C(beta) chemical shift map. On the basis of these results, we provide simple ground rules for predicting the redox state of cysteines; these rules could be used effectively in NMR structure determination, predicting new folds, and in protein folding studies.

PMID: 11101221 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No