View Single Post
  #1  
Unread 11-18-2010, 09:15 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,211
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk

Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk.

Related Articles Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk.

Nature. 2000 Jun 29;405(6790):1077-9

Authors: van Beek JD, Beaulieu L, Schäfer H, Demura M, Asakura T, Meier BH

Silks are fibrous proteins that form heterogeneous, semi-crystalline solids. Silk proteins have a variety of physical properties reflecting their range of functions. Spider dragline silk, for example, has high tensile strength and elasticity, whereas other silks are better suited to making housing, egg sacs or the capture spiral of spiders' webs. The differing physical properties arise from variation in the protein's primary and secondary structure, and their packing in the solid phase. The high mechanical performance of spider dragline silk, for example, is probably due to a beta-sheet conformation of poly-alanine domains, embedded as small crystallites within the fibre. Only limited structural information can be obtained from diffraction of silks, so further characterization requires spectroscopic studies such as NMR. However, the classical approach to NMR structure determination fails because the high molecular weight, repetitive primary structure and structural heterogeneity of solid silk means that signals from individual amino-acid residues cannot be resolved. Here we adapt a recently developed solid-state NMR technique to determine torsion angle pairs (phi, psi) in the protein backbone, and we study the distribution of conformations in silk from the Eri silkworm, Samia cynthia ricini. Although the most probable conformation in native fibres is an anti-parallel beta-sheet, film produced from liquid directly extracted from the silk glands appears to be primarily alpha-helical.

PMID: 10890452 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No