View Single Post
  #1  
Unread 08-21-2010, 11:45 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,187
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default NMR determination of residual structure in a urea-denatured protein, the 434-represso

NMR determination of residual structure in a urea-denatured protein, the 434-repressor.

Related Articles NMR determination of residual structure in a urea-denatured protein, the 434-repressor.

Science. 1992 Sep 11;257(5076):1559-63

Authors: Neri D, Billeter M, Wider G, Wüthrich K

A nuclear magnetic resonance (NMR) structure determination is reported for the polypeptide chain of a globular protein in strongly denaturing solution. Nuclear Overhauser effect (NOE) measurements with a 7 molar urea solution of the amino-terminal 63-residue domain of the 434-repressor and distance geometry calculations showed that the polypeptide segment 54 to 59 forms a hydrophobic cluster containing the side chains of Val54, Val56, Trp58, and Leu59. This residual structure in the urea-unfolded protein is related to the corresponding region of the native, folded protein by simple rearrangements of the residues 58 to 60. Based on these observations a model for the early phase of refolding of the 434-repressor(1-63) is proposed.

PMID: 1523410 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No