View Single Post
  #1  
Unread 08-08-2020, 10:56 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,204
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Resolving overlapped signals with automated FitNMR analytical peak modeling.

Resolving overlapped signals with automated FitNMR analytical peak modeling.

Related Articles Resolving overlapped signals with automated FitNMR analytical peak modeling.

J Magn Reson. 2020 Jun 13;318:106773

Authors: Dudley JA, Park S, MacDonald ME, Fetene E, Smith CA

Abstract
Nuclear magnetic resonance (NMR) is a valuable tool for determining the structures of molecules and probing their dynamics. A longstanding problem facing both small-molecule and macromolecular NMR is overlapped signals in crowded spectra. To address this, we have developed a method that extracts peak features by fitting analytically derived models of NMR lineshapes. The approach takes into account the effects of truncation, apodization, and the resulting artifacts, while avoiding systematic errors that have affected other models. Even severely overlapped peaks, beyond the point of coalescence, can be distinguished in both simulated and experimental data. We show that the method can measure unresolved backbone scalar couplings directly from a 2D proton-nitrogen spectrum of a de novo designed mini protein. The algorithm is implemented in the FitNMR open-source R package and can be used to analyze nearly any type of single or multidimensional data from small molecules or biomolecules.


PMID: 32759043 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No