View Single Post
  #1  
Unread 04-03-2020, 09:41 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,212
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Predicting 19 F NMR chemical shifts: A combined computational and experimental study of a trypasonomal oxidoreductase-inhibitor complex.

Predicting 19 F NMR chemical shifts: A combined computational and experimental study of a trypasonomal oxidoreductase-inhibitor complex.

Related Articles Predicting 19 F NMR chemical shifts: A combined computational and experimental study of a trypasonomal oxidoreductase-inhibitor complex.

Angew Chem Int Ed Engl. 2020 Apr 02;:

Authors: Dietschreit J, Wagner A, Le TA, Klein P, Schindelin H, Opatz T, Engels B, Hellmich U, Ochsenfeld C

Abstract
Fluorine's absence from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor-protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom.* Nonetheless, reliable 19F chemical shift predictions to deduce ligand binding modes hold great potential for in silico drug design. Here, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African Sleeping Sickness. We include many protein-inhibitor conformations as well as monomeric and dimeric inhibitor-protein complexes, thus rendering it the largest computational study on chemical shifts of 19F nuclei in a biological context to date. Our predicted shifts agree well with those obtained experimentally and pave the way for future work in this area.


PMID: 32239740 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No