View Single Post
  #1  
Unread 02-02-2018, 06:44 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,208
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Pulsed Dynamic Nuclear Polarization with Trityl Radicals #DNPNMR

From The DNP-NMR Blog:

Pulsed Dynamic Nuclear Polarization with Trityl Radicals #DNPNMR

p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Mathies, G., et al., Pulsed Dynamic Nuclear Polarization with Trityl Radicals. The Journal of Physical Chemistry Letters, 2016. 7(1): p. 111-116.


https://www.ncbi.nlm.nih.gov/pubmed/26651876


Continuous-wave (CW) dynamic nuclear polarization (DNP) is now established as a method of choice to enhance the sensitivity in a variety of NMR experiments. Nevertheless, there remains a need for the development of more efficient methods to transfer polarization from electrons to nuclei. Of particular interest are pulsed DNP methods because they enable a rapid and efficient polarization transfer that, in contrast with CW DNP methods, is not attenuated at high magnetic fields. Here we report nuclear spin orientation via electron spin-locking (NOVEL) experiments using the polarizing agent trityl OX063 in glycerol/water at a temperature of 80 K and a magnetic field of 0.34 T. (1)H NMR signal enhancements up to 430 are observed, and the buildup of the local polarization occurs in a few hundred nanoseconds. Thus, NOVEL can efficiently dynamically polarize (1)H atoms in a system that is of general interest to the solid-state DNP NMR community. This is a first, important step toward the general application of pulsed DNP at higher fields.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No