View Single Post
  #1  
Unread 12-23-2017, 06:08 PM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,192
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Optical control of protein pattern formation

Optical control of protein pattern formation


Patterns formed by protein reactions and diffusion are the foundation for many phenomena in biology. Yet, the experimental study of reaction-diffusion (R-D) systems has so far been dominated by chemical oscillators, for which many manipulation tools are available. Here, we developed a photoswitch for the Min system of Escherichia coli, a versatile biological in vitro R-D system consisting of the antagonistic proteins MinD and MinE. A MinE-derived peptide of 19 amino acids is covalently modified with a photoisomerizable crosslinker based on azobenzene to externally control peptide-mediated depletion of MinD from the membrane. In addition to providing an on-off switch for pattern formation, we achieve frequency-locked entrainment with a precise 2D spatial memory, allowing new insights into Min protein action on the membrane. Taken together, we provide a tool to externally control protein patterns formed by self-organization.

More...
Reply With Quote


Did you find this post helpful? Yes | No