View Single Post
  #1  
Unread 11-29-2017, 09:22 AM
nmrlearner's Avatar
nmrlearner nmrlearner is offline
Senior Member
 
Join Date: Jan 2005
Posts: 23,204
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 0
Downloads: 0
Uploads: 0
Default Progress in Proton-detected Solid-state NMR (SSNMR): Super-fast 2D SSNMR Collection for Nano-mole-scale Proteins

Progress in Proton-detected Solid-state NMR (SSNMR): Super-fast 2D SSNMR Collection for Nano-mole-scale Proteins

Publication date: Available online 28 November 2017
Source:Journal of Magnetic Resonance

Author(s): Yoshitaka Ishii, Ayesha Wickramasinghe, Isamu Matsuda, Yuki Endo, Yuji Ishii, Yusuke Nishiyama, Takahiro Nemoto, Takayuki Kamihara

Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using “ultra-fast” magic-angle spinning (MAS) at a spinning rate (? R) of 80–100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at ? R of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted “super-fast” collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H–15N correlation SSNMR spectrum for ~27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H–15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No